更相减损法|辗转相减法

时间复杂度

o(n)

题目代码

int gcd(int a,int b)
{
   if(a==b)return a;
   return a>b?gcd(a-b,b):gcd(b-a,a);
}

特殊情况

辗转相除法可以用来求若干个形如(p/q)^ri的数的最大公约数,其中:
——p/q不可以再表示为次幂的形式
​——p、q、ri均为正整数

算法推导

求指数的最大公约数,即:

f(p^x , p^y)
 = p(x,y)
 = p(y,x-y)
 = f(p^y,p(x-y))
 = f(p^y, p^x / p^y)

X要大于Y

特殊情况下的代码

LL gcd_sub(LL a,LL b)
{
    if(b>a)swap(a,b);
    if(b==1)return a;
    return gcd_sub(b,a/b);
}
暴力穷举是一种简单但不高效的算,用于解决某些问题的尝试。它通过遍历所有可能的解来寻找正确的答案。然而,由于它的复杂性较高,当问题规模增大时,暴力穷举算的执行时间会指数增长。因此,它主要适用于规模较小的问题。 辗转是一种被广泛应用于求解最大公约数的算。它通过反复用较小数去除较大数,直到余数为0为止。最后,被除数即为最大公约数。辗转的优点是它的执行速度对较快,适用于解决大数的问题。 减损也是一种用于求解最大公约数的算。它通过反复用两个数的差值去替换原来的两个数,直到两个数等为止。最后,等的数即为最大公约数。减损辗转比,适用于解决较大数值问题,但它的执行时间会受到较大数值差异的影响。 Stein算是一种高效的求解最大公约数的算,同时也被称为二进制。它结合了辗转减损的优点,并通过移位和减法操作等来加速计算过程。较于传统的算,Stein算的执行速度快,尤其适用于大数运算。 总结来说,暴力穷举适用于规模较小的问题,而辗转减损和Stein算适合解决求解最大公约数的问题。鉴于每个算的特点和优缺点,我们可以根据具体问题的要求选择合适的算来解决。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俺叫西西弗斯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值