2020牛客暑期多校训练营(第三场)

总结:
这次比赛上来看见有人L过了,然后题意读明白就直接写了,然后去看B,发现是一个环,而负数相当于(n+x),然后用个指针记录下位置就过了,然后去看A,刚开始想错了,以为蛤可以存起来,然后wa了一发,后来发现蛤不能存,直接把离线下来倒着处理,就过了。然后开C和F,C想到了要判断最长边然后找大小拇指,但是找到之后却不知道怎么判断就写了一半,F想到了ef-ed=a,是扩展欧几里得,但是没想到d、f怎么处理,也是写了一半,总的来说,还是菜。

A

题意

有一个鱼池,共有4种状态1,2,3,4分别对应无虫无鱼,有虫无鱼,无虫有鱼,有虫有鱼,鱼塘每天更新一次状态,你每天可以进行一次行动如在有鱼的情况下抓一条鱼不消耗鱼饵,无鱼的情况下消耗一个鱼饵抓一条鱼,在有虫的情况下制作一个鱼饵。

思路

对于3,4情况是固定的必抓鱼,只需讨论0,1,用贪心的思想从后往前做,如果鱼饵大于0就抓鱼,否则制作鱼饵。

代码

using namespace std;
int t,n,x,i,j,tot;
int main()
{
string s;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
cin>>s;
tot=x=i=0;
bool flag=0;
while(s[i]=='0') i++;
for(;i<n;i++)
{
if(s[i]=='2' || s[i]=='3')
{
tot++;
continue;
}
if(flag==0 && s[i]=='1') flag=1;
if(flag==1 && s[i]=='1') x++;
if(flag==1 && s[i]=='0' && x) tot++,x--;
}
if(x>=2) tot+=x/2;
printf("%d\n",tot);
}
return 0;
}

B

题意

给你一个字符串,n次操作。m表示把前面k个字符挪后面,或把后面-k(k为负数)个挪前面。a表示询问,第k个字母是什么。

思路

将整个字符串循环起来看的话,其实每次操作并没有改变整体的顺序,就是用一个数组来模拟这个循环队列就好。每次操作改变的就是起始位置的下标值而已。

代码

#include<iostream>
#include<cmath>
#include<stack>
#include<vector>
#include<cstring>
#include<algorithm>
#include<set>
#include<queue>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <complex>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cassert>
using namespace std;
typedef long long ll;
const ll inf =1e17;
#define scn(a) scanf("%d",&a)
#define scd(a) scanf("%lf",&a)
#define scc(a) scanf("%c",&a)
#define scl(a) scanf("%lld",&a)
#define ptf(a) printf("%d\n",a)
#define mes(a,b) memset(a,b,sizeof(a))
#define fon(s,n) for(int i=s;i<=n;i++)
#define range(i,a,b) for(int i=a;i<=b;++i)
#define rerange(i,a,b) for(int i=a;i>=b;--i)
//#define N 100010
const int S=20;
ll gcd(ll a,ll b) { return b>0 ? gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll q_pow(ll a,ll b,ll mod)
{
    ll ans=1,res=a;
    while(b){
        if(b&1) ans=ans*res%mod;
        res=res*res%mod;
        b>>=1;
    }
    return ans%mod;
}
 
  
int main() {
     
    std::ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
 
    string s;
    cin>>s;
    string temp;
    int q,pos;char c;
    cin>>q;
    int n=s.length();
    int head=0;
    while(q--){
        cin>>c;
        if(c=='M'){
            cin>>pos;
            head+=pos;
            head=(head+n)%n;
            //ptf(head);
        }
        else{
            cin>>pos;
            //pos=(pos+n)%n;
            cout<<s[(head+pos-1+n)%n]<<"\n";
        }
    }
    return 0;
}

C

题意

爱丽丝是机器人社会中的美人。很多机器人都想娶她。爱丽丝决定嫁给一个能解决以下难题的机器人:首先,爱丽丝的右掌形状如下:爱丽丝的左掌形状与右手掌对称。在这个谜题中,爱丽丝会给挑战者许多她手掌的手印。挑战者必须正确地告诉爱丽丝每个手印是她的左手还是右手。请注意,Alice手掌的手印是由其二维平面坐标按顺时针或逆时针顺序给出的。形状可以旋转和平移。但形状不会被放大或缩小。虽然你不是机器人,但你对解谜感兴趣。请试着解决这个难题。
多个测试组。爱丽丝手印的数量拼图。每一个手印由一个由20个点组成的简单多边形来描述。这个多边形中的每个点都将按顺时针或逆时针顺序给出。每行包含两个实数,小数点后正好有六位数,代表一个点的坐标。所以手印是由20行组成的输入。全部输入中坐标值的范围为[-1000.0000000,1000.000000]。
对于每一个手掌印,打印一行包含“right”或“left”,分别表示脚印是右掌还是左掌。

思路

按照输入点的顺序,找到边为9,即边最长的一条边的两端点、其后输入的点。若三点叉积和为正,说明逆时针输入点,反之,说明顺时针输入点。
若逆时针输入点,边出现的顺序为9,6时,为左手图形;若顺时针输入点,边出现的顺序为9,8时,为左手图形。其余情况为右手图形。

代码

#include<bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false),cin.tie(0);
#define ll long long
#define inf 0x3f3f3f3f
const int N=1e5+5;
//set<string>b;
//set<string>::iterator it;
double eps=1e-4;
struct node
{
	double x,y;
}p[25];
double dis(node a,node b)
{
	return 1.0*sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double cross(node a,node b,node c)
{
	return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
}
int main()
{
    IO;
    int T,flag,i;
	cin>>T;
	while(T--)
	{
		flag=0;
		node a,b,c;
		for(i=0;i<20;i++)
		{
			cin>>p[i].x>>p[i].y;
		}
		for(i=0;i<20;i++)
		{
			if(fabs(dis(p[i],p[(i+1)%20])-9.0)<eps)
			{
				break;
			}
		}
		a=p[i],b=p[(i+1)%20],c=p[(i+2)%20];
		if(cross(a,b,c)>0&&fabs(dis(b,c)-6.0)<eps) flag=1;
		if(cross(a,b,c)<0&&fabs(dis(b,c)-8.0)<eps) flag=1;
		if(flag==1) cout<<"left\n";
		else cout<<"right\n";
	}
    return 0; 
}

E

题意

给你一个有n个元素的数列,然后要求你构造两个数列,使得p[p[i]]=i,q[q[i]]=i,且满足使得a[i]−a[p[i]]的绝对值和/2 最小,a[i]−a[q[i]]的绝对值和/2 也要最小,且p和q每一位都不等。

思路

比赛时没看,下来看的,第一反应就是将a排序,得到一组有序数列,直接相邻两个相减就是最小值了,但是很明显,这是有局限性的。我们还需要考虑次小值,也就是将数列前移一格,然后让第一个数到末尾,然后两个一组相减,那么这个就是次优解。由于匹配规则要不一样,不能出现两两相邻匹配,第一个排列的构造肯定是2 1 4 3 6 5…,即交换相邻两位,这样花费最小。第二个排列不能与第一个排列冲突,假设可以拆成很多4,那么构造方法为 3 1 4 2。
除了4,为了使得交换位置的数尽可能相近,我们可以再拆6,对长度为6的排列,最优的构造方法为 3 1 5 2 4 6,可以枚举出所以排列方法,发现此种方法最优。最后一定是多个4和多个6的组合,dp即可。
Ps:这个题答案到了ll,习惯性inf设0x3f3f3f3f会wa。

代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=2e5+5;
const ll inf=1e18;
int a[maxn];
ll dp[maxn];
int main(){
	int te;
	cin>>te;
	while(te--){
		int n;
		cin>>n;
		for(int i=1;i<=n;++i)
			cin>>a[i];
		sort(a+1,a+1+n);
		ll ans=0;
		for(int i=2;i<=n;i+=2)
			ans+=(a[i]-a[i-1]);
		for(int i=1;i<=n;++i)
			dp[i]=inf;
		dp[4]=a[4]+a[3]-a[2]-a[1];
		dp[6]=a[6]-a[4]+a[5]-a[2]+a[3]-a[1];
		for(int i=8;i<=n;i+=2){
			ll x,y;
			x=dp[i-4]+a[i]+a[i-1]-a[i-2]-a[i-3];
			y=dp[i-6]+a[i]-a[i-2]+a[i-1]-a[i-4]+a[i-3]-a[i-5];
			dp[i]=min(x,y);
		}
		printf("%lld\n",ans+dp[n]);
	} 
	return 0;
}

F

题意

给出a,b,求c / d - e / f = a / b的一个可行解。且d, f < b

思路

如果gcd(a, b)> 1, 一定有解如下 c = a / gcd(a,b) + 1, d = f = b / gcd(a,b),e = 1。
如果b = 1或者为素数,则一定无解。
如果b 只含有一个素因数,比如27 = 3^3,也一定无解。
b 拆分成 d * f, 所以c * f - d * e = a,这里就可以用扩展欧几里得求解。

代码

#include<bits/stdc++.h>
#define ll long long
#define INF 0x3f3f3f3f
#define LLINF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define vi vector<int>
#define SZ(x) (int)x.size()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
const int N = 2000005;
bool notp[N];
ll prime[N], pnum;
void sieve() {
    memset(notp, 0, sizeof(notp));
    notp[0] = notp[1] = 1;
    pnum = 0;
    for(int i = 2; i < N; i++) {
        if(!notp[i]) prime[++pnum] = i;
        for(int j = 1; j <= pnum && prime[j] * i < N; j++) {
            notp[i *prime[j]] = 1;
            if(i % prime[j] == 0) break;
        }
    }
}
void exgcd(ll a,ll b,ll &g,ll &x,ll &y) {//ax+by=gcd(a,b)=g
    if (b == 0) {
        g = a;
        x = 1;
        y = 0;
        return;
    }
    exgcd(b, a % b, g, y, x);
    y -= (a / b) * x;
}
int main() {
    sieve();
    int t;
    scanf("%d", &t);
    while(t--) {
        ll a, b, c, d, e, f;
        scanf("%lld%lld", &a, &b);
        if(__gcd(a,b) != 1) {
            ll gcd = __gcd(a,b);
            printf("%lld %lld %lld %lld\n", a / gcd + 1, b / gcd, 1, b / gcd);
            continue;
        }
        if(b == 1 || notp[b] == 0) {
            printf("-1 -1 -1 -1\n");
            continue;
        }
        ll tmp = b;
        d = 1;
        for(int i = 1; i <= pnum; i++) {
            if(tmp == 1) break;
            if(tmp % prime[i] == 0) {
                while(tmp % prime[i] == 0) {
                    tmp /= prime[i];
                    d *= prime[i];
                }
                break;
            }
        }
        f = tmp;
//      cout << f << " " << d << '\n';
        if(tmp == 1) { // x^n
            printf("-1 -1 -1 -1\n");
        }
        else {
            ll g;
            exgcd(f, d, g, c, e); // cf - de = a
            if(a % g) {
                printf("-1 -1 -1 -1\n");
                continue;
             }
            c *= (a / g);
            e *= (a / g);
            if (c < 0 && e > 0)
                printf("%lld %lld %lld %lld\n", e, f, -c, d);
            else
                printf("%lld %lld %lld %lld\n", c, d, -e, f);
        }
    }
}

G

题意

给你n个点,m条边,然后有q次操作,每次给一个x,表示将于x所连的所有点归并到x团里面,最后问每个点属于哪个团。

思路

自己只想到了并查集,但是有关合并的地方却很乱,看了大佬的博客才明白一点。每次将给出的集合所连的集合全都合并,且每个点只会产生一次贡献,即若询问的是该点,那么之后该点与其所连的点将永远一个集合。我们选择用并查集维护属于哪个集合,再用vector存储该集合外部所连的点有哪几个。

代码

#include<bits/stdc++.h>
#define pb(a) push_back(a)
using namespace std;
const int maxn=8e5+5;
int fa[maxn];
vector<int> g[maxn];
int Find(int x){
	return fa[x]==x?x:fa[x]=Find(fa[x]);
}
void hb(vector<int>&x,vector<int>&y){
	if(x.size()<y.size())swap(x,y);
	for(int u:y)x.pb(u);
}

int main(){
	int te;
	cin>>te;
	while(te--){
		int n,m;
		cin>>n>>m;
		for(int i=0;i<n;++i)
			fa[i]=i,g[i].clear();
		int x,y;
		for(int i=1;i<=m;++i){
			cin>>x>>y;
			g[x].pb(y);
			g[y].pb(x);
		}
		int q;
		cin>>q;
		while(q--){
			cin>>x;
			if(Find(x)!=x) continue;
			vector<int>now=g[x];
			g[x].clear();
			for(auto v:now){
				int f=Find(v);
				if(f==x) continue;
				hb(g[x],g[f]);
				fa[f]=x;
			}
		}	
			for(int i=0;i<n;++i)
				printf("%d ",Find(i));
				puts("");
		
	}
	return 0;
}

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页