互信息量
-
互信息小于码率 R R R的概率称为信息中断概率(IOP),它是互信息在 R R R处的累积分布函数(CDF)
-
对于具有有限块长的AWGN信道,可以定义一个信息中断概率。当 n n n个独立和同分布时(i.i.d),互信息表示为 B e s s e l − K Bessel-K Bessel−K分布,而经过推导,当 n n n非常小时,可以近似推导处它的高斯近似
-
定义 Z ∼ N ( m , σ 2 ) Z \sim \mathcal{N}(m,\sigma^2) Z∼N(m,σ2)为高斯随机变量, Z ∼ N c ( m , σ 2 ) Z \sim \mathcal{N}_c(m,\sigma^2) Z∼Nc(m,σ2)为高斯复随机变量高斯复随机变量的公式可得
f Z ( z ) = 1 π σ 2 exp { − ∣ z − m ∣ 2 σ 2 } (1) f_Z(z) = \frac{1}{\pi \sigma^2}\exp\Big\{-\frac{|z - m|^2}{\sigma^2} \Big\} \tag{1} fZ(z)=πσ21exp{ −σ2∣z−m∣2}(1) -
定义概率密度函数(CDF)为 F Z ( z ) F_Z(z) FZ(z),定义事件 A A A为 P [ A ] P[A] P[A]
-
离散时间输出达到容量的AWGN信道是 Y = X + N Y = X + N Y=X+N,其中 X ∼ N c ( 0 , ε s ) X\sim\mathcal{N}_c\left( 0,\varepsilon _s \right) X∼Nc(0,εs), N ∼ N c ( 0 , N 0 ) N\sim\mathcal{N}_c\left( 0,N_0 \right) N∼Nc(0,N0),所以 Y ∼ N c ( 0 , ε s + N 0 ) Y\sim\mathcal{N}_c\left( 0,\varepsilon _s + N_0\right) Y∼Nc(0,εs+N0)
-
在输入和输出之间的互信息量定义为
i ( x ; y ) = log f X , Y ( x ; y ) f X ( x ) f Y ( y ) (2) i(x;y) = \log \frac{f_{X,Y}(x;y)}{f_X(x)f_Y(y)} \tag{2} i(x;y)=logfX(x)fY(y)fX,Y(x;y)(2)
平均互信息量定义为
I ( X ; Y ) = E [ i ( X ; Y ) ] (3) I(X;Y) = E[i(X;Y)] \tag{3} I(X;Y)=E[i(X;Y)](3)
通过条件概率,式(2)可变成
i ( x ; y ) = log f Y ∣ X ( y ∣ x ) f Y ( y ) (4) i(x;y) = \log \frac{f_{Y|X}(y|x)}{f_Y(y)} \tag{4} i(x;y)=logfY(y)fY∣X(y∣x)(4)
其中 f Y ∣ X ( y ∣ x ) ∼ N c ( X , N 0 ) f_{Y|X}(y|x) \sim \mathcal{N}_c(X,N_0) fY∣X(y∣x)∼Nc(X,N0),把高斯复随机过程公式代入得
i ( x ; y ) = log ( 1 + ε s N 0 ) + ∣ y ∣ 2 ε s + N 0 − ∣ y − x ∣ 2 N 0 (5) i(x;y) = \log(1+ \frac{\varepsilon_s}{N_0}) + \frac{|y|^2}{\varepsilon_s + N_0} - \frac{|y - x|^2}{N_0} \tag{5} i(x;y)=