短包(有限长编码)通信理论

本文探讨了在AWGN信道中,短包(有限长编码)通信的互信息量、互信息率和信息中断概率。通过拉普拉斯随机变量和Bessel-K分布描述了互信息的PDF,并利用高斯近似分析了信息中断概率。随着码长n的增加,信息中断概率可近似为高斯分布,并给出了信息中断概率的计算公式和参考文献。
摘要由CSDN通过智能技术生成

互信息量

  • 互信息小于码率 R R R的概率称为信息中断概率(IOP),它是互信息在 R R R处的累积分布函数(CDF)

  • 对于具有有限块长的AWGN信道,可以定义一个信息中断概率。当 n n n个独立和同分布时(i.i.d),互信息表示为 B e s s e l − K Bessel-K BesselK分布,而经过推导,当 n n n非常小时,可以近似推导处它的高斯近似

  • 定义 Z ∼ N ( m , σ 2 ) Z \sim \mathcal{N}(m,\sigma^2) ZN(m,σ2)为高斯随机变量, Z ∼ N c ( m , σ 2 ) Z \sim \mathcal{N}_c(m,\sigma^2) ZNc(m,σ2)为高斯复随机变量高斯复随机变量的公式可得
    f Z ( z ) = 1 π σ 2 exp ⁡ { − ∣ z − m ∣ 2 σ 2 } (1) f_Z(z) = \frac{1}{\pi \sigma^2}\exp\Big\{-\frac{|z - m|^2}{\sigma^2} \Big\} \tag{1} fZ(z)=πσ21exp{ σ2zm2}(1)

  • 定义概率密度函数(CDF)为 F Z ( z ) F_Z(z) FZ(z),定义事件 A A A P [ A ] P[A] P[A]

  • 离散时间输出达到容量的AWGN信道是 Y = X + N Y = X + N Y=X+N,其中 X ∼ N c ( 0 , ε s ) X\sim\mathcal{N}_c\left( 0,\varepsilon _s \right) XNc(0,εs) N ∼ N c ( 0 , N 0 ) N\sim\mathcal{N}_c\left( 0,N_0 \right) NNc(0,N0),所以 Y ∼ N c ( 0 , ε s + N 0 ) Y\sim\mathcal{N}_c\left( 0,\varepsilon _s + N_0\right) YNc(0,εs+N0)

  • 在输入和输出之间的互信息量定义为
    i ( x ; y ) = log ⁡ f X , Y ( x ; y ) f X ( x ) f Y ( y ) (2) i(x;y) = \log \frac{f_{X,Y}(x;y)}{f_X(x)f_Y(y)} \tag{2} i(x;y)=logfX(x)fY(y)fX,Y(x;y)(2)
    平均互信息量定义为
    I ( X ; Y ) = E [ i ( X ; Y ) ] (3) I(X;Y) = E[i(X;Y)] \tag{3} I(X;Y)=E[i(X;Y)](3)
    通过条件概率,式(2)可变成
    i ( x ; y ) = log ⁡ f Y ∣ X ( y ∣ x ) f Y ( y ) (4) i(x;y) = \log \frac{f_{Y|X}(y|x)}{f_Y(y)} \tag{4} i(x;y)=logfY(y)fYX(yx)(4)
    其中 f Y ∣ X ( y ∣ x ) ∼ N c ( X , N 0 ) f_{Y|X}(y|x) \sim \mathcal{N}_c(X,N_0) fYX(yx)Nc(X,N0),把高斯复随机过程公式代入得
    i ( x ; y ) = log ⁡ ( 1 + ε s N 0 ) + ∣ y ∣ 2 ε s + N 0 − ∣ y − x ∣ 2 N 0 (5) i(x;y) = \log(1+ \frac{\varepsilon_s}{N_0}) + \frac{|y|^2}{\varepsilon_s + N_0} - \frac{|y - x|^2}{N_0} \tag{5} i(x;y)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值