吴恩达深度学习week2大作业

本文详细描述了使用Python和相关库(如Numpy、H5py和Matplotlib)构建一个简单的猫/非猫图像分类器的过程,包括数据加载、预处理、模型构建、参数初始化、优化以及学习曲线的绘制。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、所需要的包

Numpy 是使用 Python 进行科学计算的基本软件包。

H5py 是与存储在 H5文件中的数据集交互的常用包。

Matplotlib 是在 Python 中绘制图形的著名库。

在这里使用 PIL 和 scipy 来测试您的模型与您自己的图片在最后。

二、整体步骤

  1. 加载数据

  2. 重塑数据

  3. 进行数据预处理:数据预处理的常见步骤:
    1.找出问题的大小和形状(m _ train,m _ test,num _ px,…)
    2.重新塑造数据集,使每个示例现在都是一个大小向量(num _ px * num _ px * 3,1)
    3.“标准化”数据

  4. 构造算法:将执行以下步骤:

    • 初始化模型参数

    • 尽量减低成本,以了解模型的参数

    • 使用学到的参数作出预测(在测试集上)

    • 分析结果并得出结论

  5. 进行优化

  6. 进行预测

  7. 整合模型并运行

三、实现步骤

1.导包

代码如下(示例):

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset

# 在Notebook中显示matplotlib绘制的图形,并将图形嵌入到Notebook中
%matplotlib inline

2.标题加载数据(猫/不是猫)

train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()```

train_set_x_orig: 原始训练集特征
train_set_y: 训练集标签
test_set_x_orig: 原始测试集特征
test_set_y: 测试集标签
classes: 包含两个元素的numpy数组,分别表示两个分类标签,例如[“non-cat”, “cat”]

3.图片显示的例子

index = 5#设置了要显示的图片在训练集中的索引,即第6张图片(索引从0开始)。
plt.imshow(train_set_x_orig[index]) #显示训练集中第 index 张图片,train_set_x_orig[index] 是一个三维数组,表示图片的像素值。
# train_set_y[:, index] 是一个形状为 (1, m_train) 的数组,表示第 index 张图片的标签,其中 m_train 是训练样本数量。
#np.squeeze(train_set_y[:, index]) 将数组的维度为1的维度去除,得到一个标量值,即图片的标签。
#classes[np.squeeze(train_set_y[:, index])].decode("utf-8") 使用图片的标签作为索引,从 classes 数组中获取相应的分类标签,并转换为字符串格式。
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") +  "' picture.")

4.获取m_train,m_test,num_px

m_train =train_set_x_orig.shape[0]#返回训练集中图像的数量。
m_test = test_set_x_orig.shape[0]# 返回测试集中图像的数量。
num_px = train_set_x_orig.shape[1]#返回训练集中每张图像的宽度和高度。由于图像是正方形的,所以它们的宽度和高度相等。

5.重塑训练和测试范例

# 重新塑形训练集
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
#将训练集的原始图像数据 train_set_x_orig 展开成一个一维数组,并转置。-1表示将剩余的维度压缩成一维数组.  train_set_x_flatten 的形状为 (num_px * num_px * 3, m_train),m_train 是训练样本数量。

# 重新塑形测试集
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
# 与上面相同

6.归一化处理

#由于像素值的范围通常在0到255之间,除以255将所有像素值限制在0到1之间
train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.

7.构造算法

sigmoid公式请添加图片描述
}}

def sigmoid(z):
    """
    Compute the sigmoid of z

    Arguments:
    z -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(z)
    """
    s= 1/(1+np.exp(-z))
    
    return s

8.对参数进行初始化

def initialize_with_zeros(dim):
    """
    This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
    
    Argument:
    dim -- size of the w vector we want (or number of parameters in this case)
    
    Returns:
    w -- initialized vector of shape (dim, 1)
    b -- initialized scalar (corresponds to the bias)
    """
    w = np.zeros((dim, 1))
    b = 0

    assert(w.shape == (dim, 1))#使用断言来验证权重参数 w 的形状是否为 (dim, 1),确保初始化正确。
    assert(isinstance(b, float) or isinstance(b, int))#使用断言来验证偏置参数 b 是否为浮点数或整数类型,确保初始化正确。
    
    return w, b

9.计算代价函数和梯度的传播

请添加图片描述

def propagate(w, b, X, Y):
    """
    Arguments:
    
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)

    Return:
    cost -- negative log-likelihood cost for logistic regression
    dw -- gradient of the loss with respect to w, thus same shape as w
    db -- gradient of the loss with respect to b, thus same shape as b
    
    """
    
    m = X.shape[1]#获取样本数量,即数据集 X 的第二维度。
    
    # 前向传播
    A = sigmoid(np.dot(w.T, X) + b)  # 前向传播第一步,激活函数,计算预测值  使用 sigmoid 函数将线性函数 w^TX+b 的输出转换为范围在0到1之间的值,表示样本为正类的概率。
	#计算损失函数。损失函数使用负对数似然函数表示,包括两部分:真实标签为1时的损失和真实标签为0时的损失。这里使用向量化计算来提高效率。
    cost = -1/m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
        
    # 反向传播(从输出到输入)
    dw = 1/m * np.dot(X, (A - Y).T)  # 相对于w的损失梯度
    db = 1/m * np.sum(A - Y)  # 相对于b的损失梯度
    
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)#将损失函数值转换为标量值。
    assert(cost.shape == ())
    #将计算得到的梯度存储在字典中。
    grads = {"dw": dw,
             "db": db}
    
    return grads, cost

10.进行优化

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    costs = []
    for i in range(num_iterations):
        grads, cost = propagate(w, b, X, Y)#调用前面实现的 propagate 函数计算当前模型参数下的梯度和损失函数值。
        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]
        #使用梯度下降算法更新权重参数 w 和偏置 b
        w = w - learning_rate * dw
        b = b - learning_rate * db
        
        if i % 100 == 0:
            costs.append(cost)#每100次迭代记录一次损失函数值
        if print_cost and i % 100 == 0:#如果 print_cost 为真且当前迭代是100的倍数,则打印当前迭代次数和损失函数值
            print ("Cost after iteration %i: %f" %(i, cost))
    
    params = {"w": w,
              "b": b}
    
    grads = {"dw": dw,
             "db": db}
    
    return params, grads, costs

11.进行预测

def predict(w, b, X):
    m = X.shape[1]
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0], 1)#将权重参数w 转换为形状与测试集特征数据 X 相同的二维数组。
  
    A = sigmoid(np.dot(w.T, X) + b)     # 计算预测概率
    # 将预测概率转换为预测标签
    for i in range(A.shape[1]):
        
        # 如果预测概率大于等于0.5,则将对应的预测结果设置为1(正类);否则设置为0(非正类)。
        if A[0, i] >= 0.5:
            Y_prediction[0, i] = 1
        else:
            Y_prediction[0, i] = 0
    
    assert(Y_prediction.shape == (1, m))#使用断言验证预测结果的形状为 (1, m)
    
    return Y_prediction

12.整合模型

def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
    """
    Builds the logistic regression model by calling the function you've implemented previously
    
    Arguments:
    X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
    Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
    X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
    Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
    num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
    learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
    print_cost -- Set to true to print the cost every 100 iterations
    
    Returns:
    d -- dictionary containing information about the model.
    """
    w, b = initialize_with_zeros(X_train.shape[0])
    
    parameters, gradients, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
    
    w = parameters["w"]
    b = parameters["b"]
    
    Y_prediction_train = predict(w, b, X_train)
    Y_prediction_test = predict(w, b, X_test)
    

    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

    
    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test, 
         "Y_prediction_train" : Y_prediction_train, 
         "w" : w, 
         "b" : b,
         "learning_rate" : learning_rate,
         "num_iterations": num_iterations}
    
    return d

13.运行

d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)

14.例子

预测一个图片是否是猫

index = 1
plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3)))
print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[int(d["Y_prediction_test"][0,index])].decode("utf-8") +  "\" picture.")

15.绘制学习曲线(含成本)

costs = np.squeeze(d['costs'])#从字典 d 中获取损失函数值列表,并使用 np.squeeze() 函数将其转换为一维数组
plt.plot(costs)#使用 plt.plot() 函数绘制损失函数值随迭代次数的变化曲线。
plt.ylabel('cost')#添加 y 轴标签,表示损失函数值。
plt.xlabel('iterations (per hundreds)')#添加 x 轴标签,表示迭代次数(每百次迭代)。
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

16.选择学习率

learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    #调用之前实现的 model 函数训练模型,并将训练好的模型存储在字典 models 中。每个模型使用不同的学习率进行训练。
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')

for i in learning_rates:
	# 使用 plt.plot() 函数绘制每个学习率对应模型的损失函数值随迭代次数的变化曲线,并添加相应的学习率标签。
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))

plt.ylabel('cost')
plt.xlabel('iterations')

legend = plt.legend(loc='upper center', shadow=True)#添加图例,并设置图例的位置和阴影效果。
frame = legend.get_frame()#获取图例的背景框架
frame.set_facecolor('0.90')#设置其背景色。
plt.show()

总结

以上就是本次记录的内容,本文介绍了如何建立一个识别猫的模型分类器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值