(吴恩达课后编程作业)Course 1 - 神经网络和深度学习 - 第二周作业01

首先进行数据处理
然后建立神经网络,主要步骤是:

  1. 定义模型结构(例如输入特征的数量)

  2. 初始化模型的参数

  3. 循环:

    3.1 计算当前损失(正向传播)

    3.2 计算当前梯度(反向传播)

    3.3 更新参数(梯度下降)

环境准备

pycharm+anaconda
我是用pycharm 还有anaconda的python3.7

下载资料

【中文】【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第二周作业
我是从这位博主的下载的,也是基于他的教程写下这篇文章,主要还是记录自己的学习过程;

安装库

首先新建一个project,把下载的东西解压到project里

  • numpy :是用Python进行科学计算的基本软件包。
  • h5py:是与H5文件中存储的数据集进行交互的常用软件包。
  • matplotlib:是一个著名的库,用于在Python中绘制图表。
  • lr_utils :在本文的资料包里,一个加载资料包里面的数据的简单功能的库。

在anaconda的环境中直接搜索安装就可以

或者创建main.py
添加

import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset

如果报错就按提示安装

显示图片

打开lr_utils.py看看

- train_set_x_orig :保存的是训练集里面的图像数据(本训练集有209张64x64的图像)。
- train_set_y_orig :保存的是训练集的图像对应的分类值(【0 | 1】,0表示不是猫,1表示是猫)。
- test_set_x_orig :保存的是测试集里面的图像数据(本训练集有50张64x64的图像)。
- test_set_y_orig : 保存的是测试集的图像对应的分类值(【0 | 1】,0表示不是猫,1表示是猫)。
- classes : 保存的是以bytes类型保存的两个字符串数据,数据为:[b’non-cat’ b’cat’]。

在main文件中添加

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = load_dataset()

查看训练集里面的图片

index = 25
plt.imshow(train_set_x_orig[index])
#print("train_set_y=" + str(train_set_y)) #你也可以看一下训练集里面的标签是什么样的。
plt.axis('off') # 不显示坐标轴
plt.show()

原博中没有说加plt.show(),然后我运行的时候图片就没显示出来
或者在头文件下面添加 #matplotlib inline 这样就不用每次要显示图片时都写上plt.show()

运行显示
在这里插入图片描述

添加


print("y=" + str(train_set_y[:,index]) + ", it's a " + classes[np.squeeze(train_set_y[:,index])].decode("utf-8") + "' picture")

#使用np.squeeze的目的是压缩维度,【未压缩】train_set_y[:,index]的值为[1] , 【压缩后】np.squeeze(train_set_y[:,index])的值为1
#print("【使用np.squeeze:" + str(np.squeeze(train_set_y[:,index])) + ",不使用np.squeeze: " + str(train_set_y[:,index]) + "】")
#只有压缩后的值才能进行解码操作

打印出当前的训练标签值
在这里插入图片描述

查看数据集情况

进行下一步,我们查看一下我们加载的图像数据集具体情况
添加

# m_train :训练集里图片的数量。
# m_test :测试集里图片的数量。
# num_px : 训练、测试集里面的图片的宽度和高度(均为64x64)。
# 请记住,train_set_x_orig 是一个维度为(m_train,num_px,num_px,3)的数组。
m_train = train_set_y.shape[1] #训练集里图片的数量。
m_test = test_set_y.shape[1] #测试集里图片的数量。
num_px = train_set_x_orig.shape[1] #训练、测试集里面的图片的宽度和高度(均为64x64)。

#现在看一看我们加载的东西的具体情况
print ("训练集的数量: m_train = " + str(m_train))
print ("测试集的数量 : m_test = " + str(m_test))
print ("每张图片的宽/高 : num_px = " + str(num_px))
print ("每张图片的大小 : (" + str(num_px) + ", " + str(num_px) + ", 3)")

运行显示
在这里插入图片描述

.shape[1]表示该矩阵的二维的数量
比如 array[
[1,2,3],
[4,5,6]
]
array.shape[0] = 2
array.shape[1] = 3

train_set_y = [0,1,1,0…];一个一维的矩阵,一行n列,代表该张图片有猫没猫(用0,1表示),所以

m_train = train_set_y.shape[1] #可以知道训练集里图片的数量。

添加

print ("训练集_图片的维数 : " + str(train_set_x_orig.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集_图片的维数: " + str(test_set_x_orig.shape))
print ("测试集_标签的维数: " + str(test_set_y.shape))

运行显示
在这里插入图片描述

shape直接显示该矩阵的维度;
比如上面那个 array.shape = [ 2 , 3 ] ;
所以train_set_y.shape表示(1,209)
而train_set_x_orig.shape表示(209,64,64,3)
209是数量,64是宽高,3是红黄蓝三种颜色;

数据维度转换

为了方便,我们要把维度为(64,64,3)的numpy数组重新构造为(64 x 64 x 3,1)的数组,要乘以3的原因是每张图片是由64x64像素构成的,而每个像素点由(R,G,B)三原色构成的,所以要乘以3。在此之后,我们的训练和测试数据集是一个numpy数组,【每列代表一个平坦的图像】 ,应该有m_train和m_test列。

插播:

通过上课时我们可以知道,Xi1 ~ Xin 可以通过W1~Wn
到达隐藏单元Z(i),Z(i)再经过激活函数(此处用的是sigmod)得到Y帽(i) 所以X(i)是一个n X 1的矩阵;W也是; Z(i)
= WT X(i)+b(i) Z = (Z1,Z2,…,Zm); 把W和b看做实数,变化的只有输入值X,X就变成一个nxm的矩阵,n代表特征,m代表向量;
所以我们原本只有一个(209,64,64,3)的数据,需要我们转换成(n,m)的格式, 特征m = 64643 =
12288,再把209余12288的位置对调即可

当你想将形状(a,b,c,d)的矩阵X平铺成形状(b * c * d,a)的矩阵X_flatten时,可以使用以下代码:

#X_flatten = X.reshape(X.shape [0],-1).T #X.T是X的转置
#将训练集的维度降低并转置。
train_set_x_flatten  = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
#将测试集的维度降低并转置。
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

arr.reshape(m,-1) #改变维度为k行、d列 (-1表示列数自动计算,d= ab /k )
arr.reshape(-1,m) #改变维度为d行、k列 (-1表示行数自动计算,d= a
b /k )

train_set_x_orig.shape[0] 就是k行,k=209,也可以用上面的m_train、m_test

然后我们看看降维之后的情况是怎么样的:

print ("训练集降维最后的维度: " + str(train_set_x_flatten.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集降维之后的维度: " + str(test_set_x_flatten.shape))
print ("测试集_标签的维数 : " + str(test_set_y.shape))

运行结果
在这里插入图片描述

标准化数据

为了表示彩色图像,必须为每个像素指定红色,绿色和蓝色通道(RGB),因此像素值实际上是从0到255范围内的三个数字的向量。机器学习中一个常见的预处理步骤是对数据集进行居中和标准化,这意味着可以减去每个示例中整个numpy数组的平均值,然后将每个示例除以整个numpy数组的标准偏差。但对于图片数据集,它更简单,更方便,几乎可以将数据集的每一行除以255(像素通道的最大值),因为在RGB中不存在比255大的数据,所以我们可以放心的除以255,让标准化的数据位于[0,1]之间

现在标准化我们的数据集:

train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255

在这里插入图片描述

以上就是对数据的处理

在这里插入图片描述
在这里插入图片描述

定义sigmoid函数

现在构建sigmoid(),需要使用 sigmoid(w ^ T x + b) 计算来做出预测。
公式 : a = 1/(1+e^-z)
所以

def sigmoid(z):
    a = 1/(1+np.exp(-z))
    return a

测试一下

#测试sigmoid()
print("====================测试sigmoid====================")
print ("sigmoid(0) = " + str(sigmoid(0)))
print ("sigmoid(9.2) = " + str(sigmoid(9.2)))

得到
在这里插入图片描述

初始化参数w和b了

"""
    此函数为w创建一个维度为(dim,1)的0向量,并将b初始化为0。
    参数:
        dim  - 我们想要的w矢量的大小(或者这种情况下的参数数量)
    返回:
        w  - 维度为(dim,1)的初始化向量。
        b  - 初始化的标量(对应于偏差)
"""
def initialize_with_zeros(dim):
    w = np.zeros(shape=(dim, 1))
    b = 0
    # 使用断言来确保我要的数据是正确的,具体作用相当于 expression
    assert (w.shape == (dim, 1))  # w的维度是(dim,1)
    assert (isinstance(b, float) or isinstance(b, int))  # b的类型是float或者是int

    return (w, b)

在这个训练集数据里面,dim就是12288

点击查看assert:解释

计算成本函数

参数:
    w  - 权重,大小不等的数组(num_px * num_px * 3,1)
    b  - 偏差,一个标量
    X  - 矩阵类型为(num_px * num_px * 3,训练数量)
    Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据数量)
#这个函数目的实现前向和后向传播的成本函数及其梯度
def propagate(w, b, X, Y):
	m = X.shape[1]
	
    #1、正向传播,也就是计算A的值
    Z= np.dot(w.T,X) + b
    A = sigmoid(Z) #计算激活值,请参考下方公式。
    
    #2、代价函数
    cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) #计算成本,请参考公式3和4。

在这里插入图片描述

在这里插入图片描述

    #3、反向传播(就是梯度下降,给W和b求偏导)
    dw = (1 / m) * np.dot(X, (A - Y).T) #请参考视频中的偏导公式。dot就是矩阵相乘
    db = (1 / m) * np.sum(A - Y) #请参考视频中的偏导公式。
	
	#使用断言确保我的数据是正确的
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    
    #创建一个字典,把dw和db保存起来。
    grads = {
                "dw": dw,
                "db": db
             }
    return (grads , cost)

在这里插入图片描述

返回:
    cost- 逻辑回归的负对数似然成本
    dw  - 相对于w的损失梯度,因此与w相同的形状
    db  - 相对于b的损失梯度,因此与b的形状相同

测试一下。

#测试一下propagate
print("====================测试propagate====================")
#初始化一些参数
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]])
grads, cost = propagate(w, b, X, Y)
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))
print ("cost = " + str(cost))

结果
在这里插入图片描述

优化函数

w,权重;
b,偏差;
x,输入的特征向量
y,标签
num_iterations,循环迭代的次数
learning_rate 梯度下降更新规则的学习率,就是效率
print_cost - 每100步打印一次损失值


# 此函数通过运行梯度下降算法来优化w和b
def optimize(w , b , X , Y , num_iterations , learning_rate , print_cost = False):
    """
        提示:
    我们需要写下两个步骤并遍历它们:
        1)计算当前参数的成本和梯度,使用propagate()。
        2)使用w和b的梯度下降法则更新参数。
    """
    costs = []
    #循环迭代多少次
    for i in range(num_iterations):
    #从成本函数获取 dw:相对于w的损失梯度;db: 相对于b的损失梯度
        grads, cost = propagate(w, b, X, Y
        dw = grads["dw"]
        db = grads["db"]
        #通过梯度下降的公式(看上面),算出w和b
        w = w - learning_rate * dw
        b = b - learning_rate * db
        
        #记录成本
        if i % 100 == 0:
            costs.append(cost)#每隔100次就把值放进costs里面,方便下一步画图
        #打印成本数据
        if (print_cost) and (i % 100 == 0):
            print("迭代的次数: %i , 误差值: %f" % (i,cost))
        
    params  = {
                "w" : w,
                "b" : b }
    grads = {
            "dw": dw,
            "db": db } 
    #把优化好的dw,db,w,b等都输出
    return (params , grads , costs)

    返回:
    params  - 包含权重w和偏差b的字典
    grads  - 包含权重和偏差相对于成本函数的梯度的字典
    成本 - 优化期间计算的所有成本列表,将用于绘制学习曲线。

目标是通过最小化成本函数 J来得到 w和b
没看懂这句话

测试一下

#测试optimize
print("====================测试optimize====================")
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]])
params , grads , costs = optimize(w , b , X , Y , num_iterations=100 , learning_rate = 0.009 , print_cost = False)
print ("w = " + str(params["w"]))
print ("b = " + str(params["b"]))
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))

结果
在这里插入图片描述
optimize函数会输出已学习的w和b的值,我们可以使用w和b来预测数据集X的标签。

预测函数

计算预测有两个步骤:

	1.计算 Y^ =A=σ(w^TX+b)

	2.将a的值变为0(如果激活值<= 0.5)或者为1(如果激活值> 0.5),

然后将预测值存储在向量Y_prediction中。

def predict(w , b , X ):
    """
    使用学习逻辑回归参数logistic (w,b)预测标签是0还是1,
    
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 维度为(num_px * num_px * 3,训练数据的数量)的数据
    
    返回:
        Y_prediction  - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量)
    
    """
    
    m  = X.shape[1] #图片的数量
    Y_prediction = np.zeros((1,m)) #把这个预测的矩阵都初始化为0
    w = w.reshape(X.shape[0],1)
    
    #计预测猫在图片中出现的概率
    A = sigmoid(np.dot(w.T , X) + b)
    #把所有图片遍历一遍,如果概率>0.5,则矩阵该点就=1,否则=0
    for i in range(A.shape[1]):
        #将概率a [0,i]转换为实际预测p [0,i]
        Y_prediction[0,i] = 1 if A[0,i] > 0.5 else 0
    #使用断言
    assert(Y_prediction.shape == (1,m))
    
    return Y_prediction

测试

#测试predict
print("====================测试predict====================")
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]])
print("predictions = " + str(predict(w, b, X)))

结果
在这里插入图片描述

整合到model函数中

def model(X_train , Y_train , X_test , Y_test , num_iterations = 2000 , learning_rate = 0.5 , print_cost = False):
    """
    通过调用之前实现的函数来构建逻辑回归模型
    
    参数:
        X_train  - numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集
        Y_train  - numpy的数组,维度为(1,m_train)(矢量)的训练标签集
        X_test   - numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集
        Y_test   - numpy的数组,维度为(1,m_test)的(向量)的测试标签集
        num_iterations  - 表示用于优化参数的迭代次数的超参数
        learning_rate  - 表示optimize()更新规则中使用的学习速率的超参数
        print_cost  - 设置为true以每100次迭代打印成本
    
    返回:
        d  - 包含有关模型信息的字典。
    """
    w , b = initialize_with_zeros(X_train.shape[0])
    
    parameters , grads , costs = optimize(w , b , X_train , Y_train,num_iterations , learning_rate , print_cost)
    
    #从字典“参数”中检索参数w和b
    w , b = parameters["w"] , parameters["b"]
    
    #预测测试/训练集的例子
    Y_prediction_test = predict(w , b, X_test)
    Y_prediction_train = predict(w , b, X_train)
    
    #打印训练后的准确性
    print("训练集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100) ,"%")
    print("测试集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100) ,"%")
    
    d = {
            "costs" : costs,
            "Y_prediction_test" : Y_prediction_test,
            "Y_prediciton_train" : Y_prediction_train,
            "w" : w,
            "b" : b,
            "learning_rate" : learning_rate,
            "num_iterations" : num_iterations }
    return d

测试

print("====================测试model====================")     
#这里加载的是真实的数据,请参见上面的代码部分。
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)

结果
在这里插入图片描述
到目前为止,我们的程序算是完成了,但是,我们可以在后面加一点东西,比如画点图什么的。
结果显示测试集只有70%,训练集接近100% 说明过拟合了

画图

#绘制图
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

在这里插入图片描述

测试某张图片

#从测试集拿一张图
index = 1
print('该图片的y:',test_set_y[0,index])
print('该照片预测结果:',d['Y_prediction_test'][0,index])
plt.imshow(test_set_x_orig[index])

在这里插入图片描述

进一步研究

研究学习率alpha的可能选择。为了让渐变下降起作用,我们必须明智地选择学习速率。学习率alphaα 决定了我们更新参数的速度。如果学习率过高,我们可能会“超过”最优值。同样,如果它太小,我们将需要太多迭代才能收敛到最佳值。这就是为什么使用良好调整的学习率至关重要的原因。

我们可以比较一下我们模型的学习曲线和几种学习速率的选择。也可以尝试使用不同于我们初始化的learning_rates变量包含的三个值,并看一下会发生什么。

learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')

for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))

plt.ylabel('cost')
plt.xlabel('iterations')

legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()

结果
在这里插入图片描述
在这里插入图片描述

最后使用非数据集的图片进行测试

唉不想写了,怎么这么长
就imread图片,然后转换成对应的格式X( n X m )然后调用预测函数
显示出结果

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值