这两天学的是随机森林 、提升算法、GBDT、Adaboost算法,今天导师让我们没事的时候看看论文,学习机器学习和深度学习,现在学习这些知识终于成为了“合法”(前些天都是自己抽时间学的),导师看到了就不乐意了。视频看完了,大概知道讲的什么,可是只是大概还不够啊,我得一点点往下整理啊,开讲了!
前边讲到了决策树,是一种分类算法,构建一棵树(分类器)进行分类。集成学习思想是将若干个学习器(分类器和回归器)组合之后产生一个新学习器。
弱分类器(weak learner) 指那些分类准确率稍好于随机猜测,比如准确率在60%-80%,反之90%以上的准确率成为强分类器。
为什么要学习集成学习?
- 若分类器间存在一定的差异性,这会导致分类的边界不同,也就是说可能存在错误。那么将多个弱分类器合并后,就可以得到更加合理的边界,减少整体的错误率,实现更好的效果。
- 对于数据集过大或者过小,可以分别进行划分和有放回地操作产生不同的数据子集,然后使用数据子集训练不同的分类器,最终再合并成为一个大的分类器。
- 如果数据的划分边界过于复杂, 使用线性模型很难描述情况,那么可以训练多个模型,然后再进行模型的融合。
- 对于多个异构的特征集的时候,很难进行融合,那么可以考虑每个数据集构建一个分类模型,然后再将多个模型融合。比如:ABC是一个特征集,BCD是一个特征集,这个时候可以用ABC训练模型m1,BCD训练模型m2,BC训练模型m3,最后把模型m1,m2,m3做一个融合。
集成算法的成功之处在于保证弱分类器的多样性。而且集成不稳定的算法也能得到一个比较明显的提升。
集成学习的一个直观理解:如下图三个弱分类器进行线性组合,得到一个融合在一起的强分类器,
常见的集成学习思想:
- Bagging
- Boosting
- Stacking
Bagging方法
一、bagging方法原理
- 此方法又叫自举汇聚法(Bootstrap Aggregating),其思想是:在原始数据集上通过有放回的抽样的方式,更新选择出S个新数据集来分别训练S个分类器的集成技术(这些模型的训练数据允许出现重复的数据)
- Bagging方法训练出来的模型在预测新样本分类的时候,会使用多数投票或者求均值的方式来统计最终的分类效果。
- Bagging方法的弱学习分类器可以是基本的算法模型,eg:Linear,ridge,Lasso, Logistic, Softmax, ID3,
- Bagging方式是有放回的抽样,并且每个子集的样本数量必须和原始样本数量一致,但是子集中允许存在重复数据。
二、训练过程
三、决策过程
学习器1会有一个结果,学习器2有一个结果,,,学习器s有一个结果,最后把这几个结果进行求均值或者多数投票。
随机森林(Random Forest)
一、算法原理
- 从原始样本集(n个样本)中用Bootstrap采样(有放回重采样)选出n个样本;
- 从所有属性中随机选择K个属性,选择出最佳分割属性作为节点创建决策树;
- 重复以上两步m次,即建立m棵决策树;
- 这m个决策树形成随机森林,通过投票表决结果决定数据属于那一类。
构建成的决策树,有如下操作:
,构建了多棵决策树,第一棵决策树的第二个节点认为当前是2,第二棵认为当前节点是2,第三棵认为当前节点是1,那个最终通过多数投票认为当前预测是2。
加入当前森林由三颗决策树构成的,决策树一第一个节点预测的一条数据值为,第二棵决策树第一个节点预测为2,第三棵决策树预测为3,那么怎样区分呢?通过一个概率的方法,请看下图,第三棵决策树认为当前预测的3为90%,那么就认为这条数据的值为3。,总之还是用过多数投票的方式进行决策。
随机森林中决策树分裂特征
随机森林是在多个特征中,选择最优的一个,而随机森林中的决策树是从多个待选特征中,随机抽出几个待选特征,然后再从随机选择的特征中找出最优的一个。
二、随机森林的推广
RF算法在实际应用中具有比较好的特性,应用也比较广泛,主要应用在:分类、回归、特征转换、异常点检测等。常见的RF变种算法如下: - Extra Tree
- Totally Random Trees Embedding(TRTE)
- Isolation Forest
Extra Tree
Extra Tree是RF的一个变种,原理基本和RF一样,区别如下:
- RF会随机采样来作为子决策树的训练集,而Extra Tree每个子决策树采用原始数据集训练;
-
- RF在选择划分特征点的时候会和传统决策树一样,会基于信息增益、信息增益率、基尼系数、均方差等原则来选择最优特征值;而Extra Tree会随机的选择一个特征值来划分决策树。
Extra Tree因为是随机选择特征值的划分点,这样会导致决策树的规模一般大于
RF所生成的决策树。也就是说Extra Tree模型的方差相对于RF进一步减少。在某
些情况下,Extra Tree的泛化能力比RF的强。
Totally Random Trees Embedding(TRTE)
TRTE是一种非监督的数据转化方式。将低维的数据集映射到高维,从而让映射
到高维的数据更好的应用于分类回归模型。
TRTE算法的转换过程类似RF算法的方法,建立T个决策树来拟合数据。当决策树构建完成后,数据集里的每个数据在T个决策树中叶子节点的位置就定下来了,将位置信息转换为向量就完成了特征转换操作。
案例:有3棵决策树,每棵决策树有5个叶子节点,某个数据x划分到第一个决策树的第3个叶子节点,第二个决策树的第一个叶子节点,第三个决策树的第第五个叶子节点,那么最终的x映射特征编码为:(0,0,1,0,0, 1,0,0,0,0, 0,0,0,0,1)
Isolation Forest(IForest)
IForest是一种异常点检测算法,使用类似RF的方式来检测异常点;IForest算法和RF算法的区别在于:
- RF在选择划分特征点的时候会和传统决策树一样,会基于信息增益、信息增益率、基尼系数、均方差等原则来选择最优特征值;而Extra Tree会随机的选择一个特征值来划分决策树。
- 在随机采样的过程中,一般只需要少量数据即可;
- 在进行决策树构建过程中,IForest算法会随机选择一个划分特征,并对划分特征随机选择一个划分阈值;
- IForest算法构建的决策树一般深度max_depth是比较小的。
对于异常点的判断,则是将测试样本x拟合到T棵决策树上。计算在每棵树上该样本的叶子节点的深度h t (x)。从而计算出平均深度h(x);然后就可以使用下列公式计算样本点x的异常概率值,p(s,m)的取值范围为[0,1],越接近于1,则是异常点的概率越大。
RF随机森林总结
RF的主要优点:
- 训练可以并行化,对于大规模样本的训练具有速度的优势;
- 由于进行随机选择决策树划分特征列表,这样在样本维度比较高的时候,仍然具有比较高的训练性能;
- 给以给出各个特征的重要性列表;
- 由于存在随机抽样,训练出来的模型方差小,泛化能力强;
- RF实现简单;
- 对于部分特征的缺失不敏感。
RF的主要缺点: - 在某些噪音比较大的特征上,RF模型容易陷入过拟合;
- 取值比较多的划分特征对RF的决策会产生更大的影响,从而有可能影响模型的效果。
Boosting提升算法
一、算法原理
- 提升算法是一种机器学习技术,可以用于回归和分类中,它每一步都产生弱预测模型(如决策树),并加权累加到总模型中;如果每一步的弱预测模型的生成都是依据损失函数的梯度方式的,那么就称为梯度提升(Gradientboosting);
- 提升技术的意义:如果一个问题存在弱预测模型,那么可以通过提升技术的办法得到一个强预测模型;
二、Boosting算法直观理解图
上图是将训练好的多个弱学习器加权融合成为一个强分类器。
三、常见的Boosting方法 - AdaBoost
- Gradient Boosting(GBT/GBDT/GBRT)
1. AdaBoost算法原理
AdaBoost(Adaptive适应的 Boosting)是一种迭代算法。每轮迭代中都会在训练集上产生一个新的学习器,然后使用该学习器对所有样本进行预测,以评估每个样本的重要性(Informative)。换句话来讲就是,算法会为每个样本赋予一个权重,每次用训练好的学习器标注/预测各个样本,如果某个样本点被预测的越正确,则将其权重降低;否则提高样本的权重。权重越高的样本在下一个迭代训练中所占的比重就越大,也就是说越难区分的样本在训练过程中会变得越重要;
整个迭代过程直到错误率足够小或者达到一定的迭代次数为止。
Adaboost算法将基本分类器的线性组合作为强分类器,同时给分类误差率较小的基本分类器以大的权值,给分类误差率较大的基分类器以小的权重值,构建的线性组合为:
样本加权的例子
第1步结束后,绿线左边分类错误的红色样本加权,于是第2步就再把权重大的红色分开。第3步的时候,在最下边画一条线,此线段认为上边是蓝色的,下边是红色的。第4步发现两个蓝色的仍然是错误的,继续加大权重,继续迭代分类。继续第5步,接着第6步,把上边每一步的迭代结果进行融合得到了第6步的结果:变成一个一个的框框的形式。
2,损失函数
损失函数其实就是错误率,I(true)=1.I(false)=0,I(G(x)!=yi)的意思是,如果分类错误了,返回1,分类正确了返回0;这样把所有的分类错误的样本,进行累加,最后除n得到的就是错误的占比(错误率)。
我把这个都写在纸上了,欢迎一起讨论哦。
梯度提升迭代决策树GBDT
GBDT(Gradient Boosting Decison Tree)也是Boosting算法的一种,但是和AdaBoost算法不同,区别如下:AdaBoost算法是利用前一轮的的弱学习器的误差来更新样本权重值,然后一轮一轮地迭代。GBDT也是迭代,但是GBDT要求弱学习器必须是CART模型,而且GBDT在模型训练的时候,是要求模型预测的样本损失尽可能的小。
梯度提升迭代决策树GBDT直观理解
以残差作为新的样本特征值:
假如现在新来了一个样本,收入值大于1K,并且上网大于·1H,那么此时就认为,这个人的年龄为26岁。
给定步长的时候,给定一个步长step(step>1),在构建下一棵树的时候使用step*残差值作为输入值,这样可以防止过拟合。
梯度提升迭代决策树GBDT,由三部分组成,DT(Regression Decistion Tree)、GB(Gradient Boosting)
和Shrinkage(衰减)。
由多棵决策树组成,所有树的结果累加起来就是最终结果。
迭代决策树和随机森林的区别:
1.随机森林使用抽取不同的样本构建不同的子树,也就是说第m棵树的构建和前m-1棵树的结果是没有关系的。
2.迭代决策树在构建子树的时候,使用之前子树构建结果后形成的残差作为输入数据构建下一个子树;然后最终预测的时候按照子树构建的顺序进行预测,并将预测结果相加。
GBDT算法原理
给定输入向量X和输出变量Y组成的若干训练样本,(X1,Y1,)(X2,Y2)…(Xn,Yn),目标是找到近似函数F(x),使得损失函数L(Y,F(x))最小。
L损失函数一般采用最小二乘损失函数或者绝对值损失函数:
最优解为:
假定F(X)是一族最优基函数F(X)的加权和,那么为了防止每个学习器能力过强,可能导致过拟合,给定一个缩放系数:
以贪心算法的思想扩张到**F(X),**求最优解f,用贪心算法在每次选择最优基函数f时,仍然困难,使用梯度下降的方法近似计算。
在给定基函数F0(X)
这个函数是找到一个叶子的最优解,最优解也就是一个常数C。根据梯度下降计算计算导数值:(实际值和预测值之间的偏差值),使用数据
最后更新迭代模型:,
GBDT回归算法和分类算法的区别
两者的区别就选择不同的损失函数。
回归算法选择的损失函数一般式均方差(最小二乘)或者绝对值误差:
而分类算法中一般的损失函数选择对数函数来表示(信息熵):
GBDT总结:
GBDT的优点:
可以处理连续值和离散值;
在相对少的调参情况下,模型的预测效果也会不错;
模型的鲁棒性比较强。
GBDT的缺点如下:
由于弱学习器之间存在关联关系,难以并行训练模型。
Bagging、Boosting的区别
- 样本选择:Bagging算法是有放回的随机采样;Boosting算法是每一轮训练集不变,只是训练集中
的每个样例在分类器中的权重发生变化,而权重根据上一轮的分类结果进行调整; - 样例权重:Bagging使用随机抽样,样例的权重;Boosting根据错误率不断的调整样例的权重值,
错误率越大则权重越大; - 预测函数:Bagging所有预测模型的权重相等;Boosting算法对于误差小的分类器具有更大的权重。
- 并行计算:Bagging算法可以并行生成各个基模型;Boosting理论上只能顺序生产,因为后一个模
型需要前一个模型的结果; - Bagging是减少模型的variance(方差);Boosting是减少模型的Bias(偏度)。
- Bagging里每个分类模型都是强分类器,因为降低的是方差,方差过高需要降低是过拟合;
Boosting里每个分类模型都是弱分类器,因为降低的是偏度,偏度过高是欠拟合。