LeetCode 1027. 最长等差数列--动态规划+map

  1. 最长等差数列
    给定一个整数数组 A,返回 A 中最长等差子序列的长度。

回想一下,A 的子序列是列表 A[i_1], A[i_2], …, A[i_k] 其中 0 <= i_1 < i_2 < … < i_k <= A.length - 1。并且如果 B[i+1] - B[i]( 0 <= i < B.length - 1) 的值都相同,那么序列 B 是等差的。

示例 1:

输入:[3,6,9,12]
输出:4
解释:
整个数组是公差为 3 的等差数列。
示例 2:

输入:[9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。
示例 3:

输入:[20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。

提示:

2 <= A.length <= 2000
0 <= A[i] <= 10000

题解

很明显可以知道的是,如果一开始从左边选择了A[i]和A[j],那么这个对应的答案是确定的,因为A[j]-A[i]=d,那么下一个元素A[x]只能是A[x]-A[j]=d,于是我们动态规划查找,用map标记元素的位置,提高速度。

AC代码

class Solution {
public:
    int dp[1010][1010];
    map<int,int>pos;
    int longestArithSeqLength(vector<int>& A) {
        memset(dp,0,sizeof(dp));
        for(int i=0;i<A.size();i++)
        {
            for(int j=i+1;j<A.size();j++)
            dp[i][j]=2;
        }
        int mx=0;
        for(int i=0;i<A.size();i++)
        {
            for(int j=i+1;j<A.size();j++)
            {
                int d=A[i]-(A[j]-A[i]);
                if(pos.find(d)!=pos.end())
                {
                    dp[i][j]=max(dp[i][j],dp[pos[d]][i]+1);
                    //cout<<i<<" "<<j<<" "<<pos[d]<<" "<<dp[pos[d]][i]<<endl;
                }
                
                mx=max(mx,dp[i][j]);
            }
            pos[A[i]]=i;
        }
        return mx;
    }
};

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值