- 最长等差数列
给定一个整数数组 A,返回 A 中最长等差子序列的长度。
回想一下,A 的子序列是列表 A[i_1], A[i_2], …, A[i_k] 其中 0 <= i_1 < i_2 < … < i_k <= A.length - 1。并且如果 B[i+1] - B[i]( 0 <= i < B.length - 1) 的值都相同,那么序列 B 是等差的。
示例 1:
输入:[3,6,9,12]
输出:4
解释:
整个数组是公差为 3 的等差数列。
示例 2:
输入:[9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。
示例 3:
输入:[20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。
提示:
2 <= A.length <= 2000
0 <= A[i] <= 10000
题解
很明显可以知道的是,如果一开始从左边选择了A[i]和A[j],那么这个对应的答案是确定的,因为A[j]-A[i]=d,那么下一个元素A[x]只能是A[x]-A[j]=d,于是我们动态规划查找,用map标记元素的位置,提高速度。
AC代码
class Solution {
public:
int dp[1010][1010];
map<int,int>pos;
int longestArithSeqLength(vector<int>& A) {
memset(dp,0,sizeof(dp));
for(int i=0;i<A.size();i++)
{
for(int j=i+1;j<A.size();j++)
dp[i][j]=2;
}
int mx=0;
for(int i=0;i<A.size();i++)
{
for(int j=i+1;j<A.size();j++)
{
int d=A[i]-(A[j]-A[i]);
if(pos.find(d)!=pos.end())
{
dp[i][j]=max(dp[i][j],dp[pos[d]][i]+1);
//cout<<i<<" "<<j<<" "<<pos[d]<<" "<<dp[pos[d]][i]<<endl;
}
mx=max(mx,dp[i][j]);
}
pos[A[i]]=i;
}
return mx;
}
};