1004. 最大连续1的个数 III

给定一个由若干 0 和 1 组成的数组 A,我们最多可以将 K 个值从 0 变成 1 。

返回仅包含 1 的最长(连续)子数组的长度。

示例 1:

输入:A = [1,1,1,0,0,0,1,1,1,1,0], K = 2
输出:6
解释
[1,1,1,0,0,1,1,1,1,1,1]
粗体数字从 0 翻转到 1,最长的子数组长度为 6。

示例 2:

输入:A = [0,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,1,1,1], K = 3
输出:10
解释
[0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1] 粗体数字从 0 翻转到 1,最长的子数组长度为 10。

提示:

1 <= A.length <= 20000
0 <= K <= A.length
A[i] 为 0 或 1 

来源:力扣(LeetCode)1004. 最大连续1的个数 III
链接:https://leetcode-cn.com/problems/max-consecutive-ones-iii

法一:滑动窗口

题目要求在一串连续的 0 1 之间找到满足要求的最大连续子串。其中K表示可以把0替换成1的次数。

分析

比如对于 { 1,1,1,0,0,0,1,1,1,1,0 } K=2 而言。满足要求的最大连续子串长度为 6 。具体分析如下:

而根据题目要求,能达到的最大窗口宽度有两部分组成,{ 数字1的窗口,用0替代的窗口} 。则最大可达宽度为 wind+K 。

根据滑动窗口的做法,先变量 i 表示当前窗口左边界, 变量 j 表示当前窗口右边界。设置变量wind表示当前窗口中 1 的个数,设置变量maxWind表示最大的一个窗口宽度。

情况一:当前窗口 小于 最大可达窗口

该情况下,直接进行当前窗口的扩展即可。

  1. 初始状态,当前值为 1 。 wind+=1。
    最大可达宽度为 wind+K = 3 ,当前宽度为 (j - i + 1) = 1

在这里插入图片描述

  1. j 向右试探,当前值为 1 ,wind += 1 。
    最大可达宽度为 wind+K = 4 ,当前宽度为 (j - i + 1) = 2

在这里插入图片描述
3. j 向右试探,当前值为 1 ,wind += 1 。
最大可达宽度为 wind+K = 5 ,当前宽度为 (j - i + 1) = 3

在这里插入图片描述

  1. j 向右试探,当前值为 0 ,wind 不变。
    最大可达宽度为 wind+K = 5 ,当前宽度为 (j - i + 1) = 4

在这里插入图片描述

  1. j 向右试探,当前值为 1 ,wind 不变。
    最大可达宽度为 wind+K = 5 ,当前宽度为 (j - i + 1) = 5

在这里插入图片描述

情况二:当前窗口 > 最大可达窗口

当我们的 当前窗口已经超出最大可达窗口时,即我们无法再继续的添加元素了,需要适当的减少窗口内的元素,空出空间方便我们继续向右扩展新窗口。

  1. j 向右试探,当前值为 0 ,wind 不变 。
    最大可达宽度为 wind+K = 5 ,当前宽度为 (j - i + 1) = 6 。
    当前窗口超出最大窗口,无法继续添加元素到窗口

在这里插入图片描述1.记录现阶段窗口最大值。
2.移动窗口左边界,窗口内腾出位置后,继续向后试探(因为后面可能还存在更长的元素)。
3.注意,若取消的边界元素是1,对应的wind应该减小。

wind -= 1。现最大可达宽度为 wind+K = 4 ,当前宽度为 (j - i + 1) = 5 。
窗口任然无法没有空间存放新元素,则继续上述步骤移动窗口左边界。

在这里插入图片描述
最大可达宽度为 wind+K = 3 ,当前宽度为 (j - i + 1) = 4 。
窗口任然无法没有空间存放新元素,则继续上述步骤移动窗口左边界。

在这里插入图片描述
最大可达宽度为 wind+K = 2 ,当前宽度为 (j - i + 1) = 3 。
窗口任然无法没有空间存放新元素,则继续上述步骤移动窗口左边界。

在这里插入图片描述

情况一:当前窗口 小于 最大可达窗口

最大可达宽度为 wind+K = 2 ,当前宽度为 (j - i + 1) = 1 。
可以继续添加新元素了。

在这里插入图片描述
将当前 arr[j] 元素添加到窗口,由于当前窗口中没有 1 ,最大可达窗口的宽度只有 2 个。

在这里插入图片描述

情况三:当前窗口 == 最大可达窗口,当前值为 1

此时需要判断,如果我们此时加入的元素为 1 ,则表示我们的最大可达窗口将会扩张(wind+=1)。
而此时加入的元素如果为 0 ,则会变成情况二:当前窗口 小于 最大可达窗口

  1. 此时arr[j] 值为 1 ,wind += 1 。则
    最大可达宽度为 wind+K = 3 ,当前宽度为 (j - i + 1) = 3

在这里插入图片描述

  1. j 向右试探,当前值为 1 ,wind += 1 。
    最大可达宽度为 wind+K = 4 ,当前宽度为 (j - i + 1) = 4

在这里插入图片描述

  1. j 向右试探,当前值为 1 ,wind += 1 。
    最大可达宽度为 wind+K = 5 ,当前宽度为 (j - i + 1) = 5

在这里插入图片描述

  1. j 向右试探,当前值为 1 ,wind += 1 。
    最大可达宽度为 wind+K = 6 ,当前宽度为 (j - i + 1) = 6

在这里插入图片描述

情况四:当前窗口 == 最大可达窗口,当前值为 0
  1. j 向右试探,当前值为 0 ,wind 不变。则
    最大可达宽度为 wind+K = 6 ,当前宽度为 (j - i + 1) = 7
    此时,需要移动窗口左边界。
    注:在移动窗口之前,记得备份当前最大窗口宽度,即 maxWind = max(maxWind, j - i + 1);

在这里插入图片描述
9. 窗口左边界移动,即将4号下标位置从窗口中取出,把10号下标位置加入窗口。

在这里插入图片描述

通过以上四种步骤的处理方法,便足矣因对此题中的所有情况。而我们注意到maxWind每次都在窗口即将缩减时记录一次当前窗口的大小,并且maxWind只取最大值。

参考代码:

int longestOnes(vector<int>& A, int K) {
	int wind = 0, i = 0, j = 0;
	int maxWind = 0;
	while (j < A.size())
	{
		if (A[j] == 1)
		{
			wind++;	// 统计连续1的窗口
			j++;	// 窗口右边界扩张
		}
		else
		{
			// 当前为0,是否可以添加
			if ((j - i) >= wind + K)	// 当前窗口 是否超出 最大窗口
			{
				// 不可再添加,需要缩减左边界
				maxWind = std::max(maxWind, j - i);	// 记录当前最大窗口值
				if (A[i] == 1) wind--;	// 被移除的是否为 1
				i++;
			}
			else j++;
		}

	}
	maxWind = std::max(maxWind, j - i);
	return maxWind;
}
法二:二分查找

参考力扣官方题解。

在这里插入图片描述
在这里插入图片描述
分析:如图所示,蓝色部分是前缀和,表示当前元素之前有几个0。红色表示下标,黑色表示数据。

在 arr[5] 到 arr[10] 所在的区间里恰能达到最大。

在arr[10]所对应的前缀表prev[11]中,数字3表示在此之前共有3个0。我们用 prev[11] - K = 1,对应位置在prev[5]。即,此时arr[5] ~ arr[10] 之间恰有两个0,其余皆为 1 。
在这里插入图片描述

同理 arr[6] ~ arr[11] 之间也可以为最大。其对应前缀表为 prev[12] - K = prev[6] 。

参考代码:

int longestOnes(vector<int>& A, int K) 
{
	int n = A.size();
	// 前缀表:某元素左侧有几个0
	vector<int> P(n + 1);
	for (int i = 1; i <= n; ++i) {
		P[i] = P[i - 1] + (1 - A[i - 1]);
	}

	int ans = 0;
	for (int right = 0; right < n; ++right) {
	// 二分法找大于等于 P[right + 1] - K 的值的坐标
		int left = lower_bound(P.begin(), P.end(), P[right + 1] - K) - P.begin();
		ans = max(ans, right - left + 1);
	}
	return ans;
}

复杂度分析

时间复杂度: O ( n log ⁡ n ) O(n \log n) O(nlogn),其中 n 是数组 A 的长度。每一次二分查找的时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn),我们需要枚举 right \textit{right} right 进行 n 次二分查找,因此总时间复杂度为 O ( n log ⁡ n ) O(n \log n) O(nlogn)

空间复杂度: O ( n ) O(n) O(n),即为前缀和数组 P 需要的空间。

在这里插入图片描述
参考代码:

int longestOnes(vector<int>& A, int K) {
	int n = A.size();
	// lsum记录左边界左侧0的个数
	// rsum记录右边界左侧0的个数
	int left = 0, lsum = 0, rsum = 0;
	int ans = 0;
	for (int right = 0; right < n; ++right) {
		rsum += 1 - A[right];
		// 维持窗口之间最多有K个0
		while (lsum < rsum - K) 
		{
			lsum += 1 - A[left];
			++left;
		}
		ans = max(ans, right - left + 1);
	}
	return ans;
}

复杂度分析

时间复杂度: O ( n ) O(n) O(n),其中 n 是数组 A 的长度。我们至多只需要遍历该数组两次(左右指针各一次)。

空间复杂度: O ( 1 ) O(1) O(1),我们只需要常数的空间保存若干变量。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我叫RT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值