Hive基础【自定义函数,数据的压缩和存储】

一 自定义函数

Hive的内置函数不可能覆盖所有的需求

根据用户自定义函数类别分为以下三种:

(1)UDF(User-Defined-Function)

​ 一进一出

(2)UDAF(User-Defined Aggregation Function)

​ 聚集函数,多进一出

​ 类似于:count/max/min

(3)UDTF(User-Defined Table-Generating Functions)

​ 一进多出

​ 如lateral view explore()

1 UDF函数

  • 创建Maven项目

    套路:

    ​ 写API:new对象,做事情,关对象

    ​ 写插件:继承点什么,实现点什么

  • 导入项目

    <dependencies>
    		<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->
    		<dependency>
    			<groupId>org.apache.hive</groupId>
    			<artifactId>hive-exec</artifactId>
    			<version>3.1.2</version>
    		</dependency>
    </dependencies>
    
  • 编写代码

    package com.hike.hive;
    
    import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
    import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
    import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
    import org.apache.hadoop.hive.ql.metadata.HiveException;
    import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
    import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
    import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
    import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
    
    /**
     * 返回字符串的长度
     */
    public class MyUDF extends GenericUDF {
        /**
         * 检查输入的方法以及约束输出的类型
         * @param objectInspectors  输入参数的检查器,有几个参数就有几个参数的检查器
         * @return  输出的参数检查器
         * @throws UDFArgumentException
         */
        public ObjectInspector initialize(ObjectInspector[] objectInspectors) throws UDFArgumentException {
           if(objectInspectors.length != 1){
               throw new UDFArgumentLengthException("错误的参数数量");
           }
           if(!objectInspectors[0].getCategory().equals(ObjectInspector.Category.PRIMITIVE)){
               throw new UDFArgumentTypeException(0, "参数类型不一致");
           }
           return PrimitiveObjectInspectorFactory.javaIntObjectInspector;
        }
    
        /**
         * 实现逻辑的方法
         * @param deferredObjects
         * @return
         * @throws HiveException
         */
        public Object evaluate(DeferredObject[] deferredObjects) throws HiveException {
            Object o = deferredObjects[0].get();
            if(o == null){
                return 0;
            }
            return o.toString().length();
        }
    
        /**
         * 如果方法执行过程中出现问题,显示错误提示信息
         * @param strings
         * @return
         */
        public String getDisplayString(String[] strings) {
            return null;
        }
    }
    
  • 将打包好的jar包上传服务器上的/opt/module/hive/lib目录下

  • 重启hive服务,连接数据库

    hiveservices.sh restart
    beeline -u jdbc:hive2://hadoop101:10000 -n hike
    
  • 创建临时函数

    create temporary function my_len as "com.hike.hive.MyUDF";
    
  • 执行临时函数

    select my_len("123");
    

不是重点,写的时候回来找文档即可

二 压缩和存储

1 MR支持的压缩编码

压缩格式工具算法文件扩展名是否可切分
DEFLATEDEFLATE.deflate
GzipgzipDEFLATE.gz
bzip2bzip2bzip2.bz2
LZOlzopLZO.lzo
SnappySnappy.snappy

snappy是目前最流行的压缩编码,因为此种压缩方式更加快速。

1 开启Map输出阶段压缩

开启map输出阶段压缩可以减少job中map和Reduce task间数据传输量。

  • 开启hive中间传输数据压缩功能

    set hive.exec.compress.intermediate=true;
    
  • 开启mapreduce中map输出压缩功能

    set mapreduce.map.output.compress=true;
    
  • 设置mapreduce中map输出数据的压缩方式

    set mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.SnappyCodec;
    
  • 执行查询语句

    hive (default)> select count(ename) name from emp;
    

2 开启Reduce输出阶段压缩

当Hive将输出写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。

  • 开启hive最终输出数据压缩功能

    set hive.exec.compress.output=true;
    
  • 开启mapreduce最终输出数据压缩

    set mapreduce.output.fileoutputformat.compress=true;
    
  • 设置mapreduce最终数据输出压缩方式

    set mapreduce.output.fileoutputformat.compress.codec =
    
     org.apache.hadoop.io.compress.SnappyCodec;
    
  • 设置mapreduce最终数据输出压缩为块压缩

    set mapreduce.output.fileoutputformat.compress.type=BLOCK;
    
  • 测试一下输出结果是否是压缩文件

    insert overwrite local directory
     '/opt/module/datas/distribute-result' select * from emp distribute by deptno sort by empno desc;
    

一般在输入端使用压缩,在输出端使用较少

3 比较各种文件存储格式

Hive支持的存储数据的格式主要有:TEXTFILE 、SEQUENCEFILE、ORC、PARQUET。

前两者称为行式存储,后两者称为列式存储,前者将一张表格按照行存储到磁盘上,后者按照列存储到磁盘上。

两者存储方式的优劣要根据具体使用场景进行判断。

(1)ORC格式

Orc (Optimized Row Columnar)是Hive 0.11版里引入的新的存储格式。

每个Orc文件由1个或多个stripe组成,每个stripe一般为HDFS的块大小,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到Parquet中的row group的概念。每个Stripe里由三部分组成,分别是Index Data,Row Data,Stripe Footer:

在这里插入图片描述

Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引应该只是记录某行的各字段在Row Data中的offset。

Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。

Stripe Footer:存的是各个Stream的类型,长度等信息。

每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。

(2)Parquet格式

Parquet文件是以二进制方式存储,不可以直接读取,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。

行组(Row Group):每一个行组包含一定的行数,在一个HDFS文件中至少存储一个行组,类似于orc的stripe的概念。

列块(Column Chunk):在一个行组中每一列保存在一个列块中,行组中的所有列连续的存储在这个行组文件中。一个列块中的值都是相同类型的,不同的列块可能使用不同的算法进行压缩。

页(Page):每一个列块划分为多个页,一个页是最小的编码的单位,在同一个列块的不同页可能使用不同的编码方式。

通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。

一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。

(3)主流文件存储格式对比

  • 创建表,存储数据格式为TEXTFILE

    create table log_text (
    track_time string,
    url string,
    session_id string,
    referer string,
    ip string,
    end_user_id string,
    city_id string
    )
    row format delimited fields terminated by '\t'
    stored as textfile ; --指定文件存储格式,不指定时默认为文本格式
    
  • 向表中插入数据

    load data local inpath '/opt/module/datas/log.data' into table log_text ;
    
  • 创建表,存储数据格式为ORC

    create table log_orc(
    track_time string,
    url string,
    session_id string,
    referer string,
    ip string,
    end_user_id string,
    city_id string
    )
    row format delimited fields terminated by '\t'
    stored as orc
    tblproperties("orc.compress"="NONE");  --不启用压缩
    
  • 向表中插入数据

    insert into table log_orc select * from log_text ;
    
  • 创建表,存储数据格式为parquet

    create table log_parquet(
    track_time string,
    url string,
    session_id string,
    referer string,
    ip string,
    end_user_id string,
    city_id string
    )
    row format delimited fields terminated by '\t'
    stored as parquet ;
    
  • 向表中加载数据

    insert into table log_parquet select * from log_text ;
    
  • 查看三个文件的大小

    dfs -du -h /user/hive/warehouse/文件名 ;
    
  • 存储文件的压缩比总结:

    ORC > Parquet > textFile

4 比较各种文件压缩格式

参数在sql语句的tblproperities字段中进行设置

keydefaultnotes
orc.compressZLIBhigh level compression (one of NONE, ZLIB, SNAPPY)
orc.compress.size262,144number of bytes in each compression chunk
orc.stripe.size268,435,456number of bytes in each stripe
orc.row.index.stride10,000number of rows between index entries (must be >= 1000)
orc.create.indextruewhether to create row indexes
orc.bloom.filter.columns“”comma separated list of column names for which bloom filter should be created
orc.bloom.filter.fpp0.05false positive probability for bloom filter (must >0.0 and <1.0)

(1)创建一个非压缩的的ORC存储方式

--创建表格
create table log_orc_zlib(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc
tblproperties("orc.compress"="ZLIB");
--插入数据
insert into log_orc_zlib select * from log_text;
--查看数据
dfs -du -h /user/hive/warehouse/log_orc_zlib/ ;

(2)创建一个SNAPPY压缩的ORC存储方式

--创建表格
create table log_orc_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc
tblproperties("orc.compress"="SNAPPY");
--插入数据
insert into log_orc_snappy select * from log_text;
--查看数据
dfs -du -h /user/hive/warehouse/log_orc_snappy/ ;

(3)创建一个SNAPPY压缩的parquet格式

--创建表格
create table log_par_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc
tblproperties("parqute.compress"="SNAPPY");
--插入数据
insert into log_par_snappy select * from log_text;
--查看数据
dfs -du -h /user/hive/warehouse/log_par_snappy/ ;

hive表的数据存储格式一般选择:orc或parquet。压缩方式一般选择snappy,lzo。
hive配套数据

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OneTenTwo76

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值