机器学习【集成学习】

一 集成学习算法简介

1 什么是集成学习

在这里插入图片描述

集成学习通过建立几个模型来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。

2 机器学习的两个核心任务

在这里插入图片描述

3 集成学习中boosting和Bagging

在这里插入图片描述

只要单分类器的表现不太差,集成学习的结果总是要好于单分类器的.

二 Bagging

1 Bagging集成原理

目标:把下面的圈和方块进行分类

在这里插入图片描述

实现过程:

  • 采样不同数据集
    在这里插入图片描述

  • 训练分类器

在这里插入图片描述

  • 平权投票,获取最终结果

在这里插入图片描述

  • 主要实现过程小结
    在这里插入图片描述

2 随机森林构造过程

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

随机森林 = Bagging + 决策树

在这里插入图片描述

例如,如果训练了5个树, 其中有4个树的结果是True, 1个树的结果是False, 那么最终投票结果就是True

随机森林够造过程中的关键步骤(用N来表示训练用例(样本)的个数,M表示特征数目):

1)一次随机选出一个样本,有放回的抽样,重复N次(有可能出现重复的样本)

2) 随机去选出m个特征, m <<M,建立决策树

  • 为什么要随机抽样训练集

    如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的

  • 为什么要有放回地抽样

    如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

3 随机森林api介绍

sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None, min_samples_split=2)
	n_estimators:integer,optional(default = 10)森林里的树木数量120,200,300,500,800,1200
	Criterion:string,可选(default =“gini”)分割特征的测量方法
	max_depth:integer或None,可选(默认=无)树的最大深度 5,8,15,25,30
	max_features="auto”,每个决策树的最大特征数量
		If "auto", then max_features=sqrt(n_features).
		If "sqrt", then max_features=sqrt(n_features)(same as "auto").
		If "log2", then max_features=log2(n_features).
		If None, then max_features=n_features.
	bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样
	min_samples_split:节点划分最少样本数
	min_samples_leaf:叶子节点的最小样本数
超参数:n_estimator, max_depth, min_samples_split,min_samples_leaf

4 随机森林预测案例

  • 实例化随机森林
# 随机森林去进行预测
rf = RandomForestClassifier()
  • 定义超参数的选择列表
param = {"n_estimators": [120,200,300,500,800,1200], "max_depth": [5, 8, 15, 25, 30]}
  • 使用GridSearchCV进行网格搜索
# 超参数调优
gc = GridSearchCV(rf, param_grid=param, cv=2)

gc.fit(x_train, y_train)

print("随机森林预测的准确率为:", gc.score(x_test, y_test))
# 查看最好的超参数
gc.best_estimator_

注意随机森林的建立过程,树的深度、树的个数等需要进行超参数调优

5 bagging集成优点

Bagging + 决策树/线性回归/逻辑回归/深度学习… = bagging集成学习方法

经过上面方式组成的集成学习方法:

  1. 均可在原有算法上提高约2%左右的泛化正确率
  2. 简单, 方便, 通用

三 Boosting

1 boosting集成原理

1.1 什么是boosting

在这里插入图片描述

随着学习的积累从弱到强

简而言之:每新加入一个弱学习器,整体能力就会得到提升

代表算法:Adaboost,GBDT,XGBoost

1.2 实现过程

训练第一个学习器

在这里插入图片描述

调整数据分布

在这里插入图片描述

训练第二个学习器

在这里插入图片描述

再次调整数据分布

在这里插入图片描述

依次训练学习器,调整数据分布

在这里插入图片描述

整体过程实现

在这里插入图片描述

关键点:

如何确认投票权重?

如何调整数据分布?

在这里插入图片描述
在这里插入图片描述

Dt(x)为之前一步的权重值,初始值为1

AdaBoost的构造过程小结

在这里插入图片描述

bagging集成与boosting集成的区别:

  • 数据方面

Bagging:对数据进行采样训练;

Boosting:根据前一轮学习结果调整数据的重要性。

  • 投票方面

Bagging:所有学习器平权投票;

Boosting:对学习器进行加权投票。

  • 学习顺序

Bagging的学习是并行的,每个学习器没有依赖关系;

Boosting学习是串行,学习有先后顺序。

  • 主要作用

Bagging主要用于提高泛化性能(解决过拟合,也可以说降低方差)

Boosting主要用于提高训练精度 (解决欠拟合,也可以说降低偏差)

在这里插入图片描述

1.3 api介绍

from sklearn.ensemble import AdaBoostClassifier
	api链接:https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier

2 GBDT

梯度提升决策树(GBDT Gradient Boosting Decision Tree) 是一种迭代的决策树算法,**该算法由多棵决策树组成,所有树的结论累加起来做最终答案。**它在被提出之初就被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。

GBDT = 梯度下降 + Boosting + 决策树

2.1 梯度的概念

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 GBDT执行流程

在这里插入图片描述

如果上式中的hi(x)=决策树模型,则上式就变为:

GBDT = 梯度下降 + Boosting + 决策树

2.3 案例

预测编号5的身高:

编号年龄(岁)体重(KG)身高(M)
15201.1
27301.3
321701.7
430601.8
52565?

第一步:计算损失函数,并求出第一个预测值:

在这里插入图片描述

第二步:求解划分点
在这里插入图片描述

得出:年龄21为划分点的方差=0.01+0.0025=0.0125

第三步:通过调整后目标值,求解得出h1(x)

在这里插入图片描述

第四步:求解h2(x)

在这里插入图片描述

得出结果:
在这里插入图片描述

编号5身高 = 1.475 + 0.03 + 0.275 = 1.78

2.4 GBDT主要执行思想

1.使用梯度下降法优化代价函数;

2.使用一层决策树作为弱学习器,负梯度作为目标值;

3.利用boosting思想进行集成。

3.XGBoost

XGBoost= 二阶泰勒展开+boosting+决策树+正则化

  • 面试题:了解XGBoost么,请详细说说它的原理

回答要点:二阶泰勒展开,boosting,决策树,正则化

Boosting:XGBoost使用Boosting提升思想对多个弱学习器进行迭代式学习

二阶泰勒展开:每一轮学习中,XGBoost对损失函数进行二阶泰勒展开,使用一阶和二阶梯度进行优化。

决策树:在每一轮学习中,XGBoost使用决策树算法作为弱学习进行优化。

正则化:在优化过程中XGBoost为防止过拟合,在损失函数中加入惩罚项,限制决策树的叶子节点个数以及决策树叶子节点的值。

4 什么是泰勒展开式

在这里插入图片描述

泰勒展开越多,计算结果越精确

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OneTenTwo76

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值