【实时数仓】DWM层订单宽表之实现基本的维度查询、加入旁路缓存模式

一 DWM层-订单宽表

1 维表关联代码实现

维度关联实际上就是在流中查询存储在hbase中的数据表。但是即使通过主键的方式查询,hbase的查询速度也是不及流之间的join。外部数据源的查询常常是流式计算的性能瓶颈,所以在这个基础上还有进行一定的优化。

(1)首先实现基本的维度查询功能

a 封装Phoenix查询的工具类PhoenixUtil

实现从phoenix表中查询数据。

package com.hzy.gmall.realtime.utils;
/**
 * 从phoenix表中查询数据
 */
public class PhoenixUtil {
   

    private static Connection conn;

    private static void initConn() {
   
        try {
   
            // 注册驱动
            Class.forName("org.apache.phoenix.jdbc.PhoenixDriver");
            // 获取连接
            conn = DriverManager.getConnection(GmallConfig.PHOENIX_SERVER);
            // 设置操作的表空间
            conn.setSchema(GmallConfig.HBASE_SCHEMA);
        } catch (Exception e) {
   
            e.printStackTrace();
        }
    }

    // 执行查询sql,将查询结果封装为T类型对象,放到List中
    public static <T>List<T> queryList(String sql,Class<T> clz){
   
        if (conn == null){
   
            initConn();
        }
        List<T> resList = new ArrayList<>();
        ResultSet rs = null;
        PreparedStatement ps = null;
        try {
   
            // 创建数据库操作对象
             ps = conn.prepareStatement(sql);
            // 执行SQL语句
             rs = ps.executeQuery();
             // 获取查询结果集的元数据信息
            ResultSetMetaData metaData = rs.getMetaData();

            // 处理结果集
            // ID| TM_NAME
            // 1 | zhangsan
            while (rs.next()){
   
                // 通过反射创建要封装的对象
                T obj = clz.newInstance();
                // 对所有列进行遍历,以获取列的名称
                // jdbc操作时列从1开始
                for (int i = 1; i <= metaData.getColumnCount(); i++){
   
                    String columnName = metaData.getColumnName(i);
                    // 通过BeanUtils工具类给对象的属性赋值
                    BeanUtils.setProperty(obj,columnName,rs.getObject(i));
                }
                // 将封装的对象放到List集合中
                resList.add(obj);
            }
        } catch (Exception e) {
   
            e.printStackTrace();
        } finally {
   
            // 释放资源
            if (rs != null){
   
                try {
   
                    rs.close();
                } catch (SQLException e) {
   
                    e.printStackTrace();
                }
            }
            if (ps != null){
   
                try {
   
                    ps.close();
                } catch (SQLException e) {
   
                    e.printStackTrace();
                }
            }
        }
        return resList;
    }


    // 测试
    public static void main(String[] args
要想在百度八亿网页的数据海洋中找到你所要的信息, 人工方式需要1200 多人年,而百度搜索技术不到1 秒钟。人 们被数据淹没,却渴望知识。商务智能技术已成为当今企业 获取竞争优势的源泉之一。商务智能通常被理解为将企业中 现有的数据转化为知识,帮助企业做出明智决策的IT工具集。 其中数据仓库、OLAP和数据挖掘技术是商务智能的重要组成 部分。商务智能的关键在于如何从众多来自不同企业运作系 统的数据中,提取有用数据,进行清理以保证数据的正确性, 然后经过抽取、转换、装载合并到一个企业级的数据仓库里, 从而得到企业数据的一个全局视图,并在此基础上利用适当 的查询分析、数据挖掘、OLAP等技术工具对其进行分析处理, 最终将知识呈现给管理者,为管理者的决策过程提供支持。 可见,数据仓库技术是商业智能系统的基础,在智能系统开 发过程中,星型模式设计又是数据仓库设计的基本概念之一。 星型模式是由位于中央的事实表和环绕在四周的维度表 组成的,事实表中的每一行与每个维度表的多行建立关系, 查询结果是通过将一个或者多个维度表与事实表结合之后产 生的,因此每一个维度表和事实表都有一个“一对多”的连 接关系,维度表的主键是事实表中的外键。随着企业交易量 的越来越多,星型模式中的事实表数据记录行数会不断增加, 而且交易数据一旦生成历史是不能改变的,即便不得不变动, 如对发现以前的错误数字做修改,这些修改后的数据也会作 为一行新纪录添加到事实表中。与事实表总是不断增加记录 的行数不同,维度表的变化不仅是增加记录的行数,而且据 需求不同维度表属性本身也会发生变化。本文着重讨论数据 仓库维度表的变化类型及其更新技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OneTenTwo76

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值