【1】50.pow(x,n) 分治法

这篇博客探讨了如何使用分治算法优化计算x的n次幂的效率,包括递归快速幂和迭代快速幂两种解法。通过这种方法,可以在O(logn)的时间复杂度内完成计算,避免了暴力求解的O(n)复杂度。示例展示了不同输入下的计算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

50.pow(x,n)

实现 pow(x, n) ,即计算 x 的 n 次幂函数。

示例 1:
输入: 2.00000, 10
输出: 1024.00000

示例 2:
输入: 2.10000, 3
输出: 9.26100

示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25

说明:
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−231, 231 − 1] 。

解法一:暴力求解
即连续相乘,略过不谈。
时间复杂度O(n)

解法二:递归快速幂

x^n = x^(n/2) * x^(n/2) ,n为偶数
= x^(n/2) * x^(n/2) * x, n为奇数(假设这里的n/2已向下取整)
时间复杂度O(logn)

class Solution
{
public:
    //分治法,将n分为n/2*n/2
    double myPow(double x,long n)
    {
        if(n==0) return 1;
        if(n<0) return 1/myPow(x,-n);
        long double m=myPow(x,n/2);

        if(n%2==0)
            return m*m;
        else
            return m*m*x;
    }

};

解法三:迭代快速幂
不采用递归,直接通过循环解决
解题思路和递归相同

class Solution
{
public:
    double myPow(double x,long n)
    {
        long m=n;  //使用long以免n位数过大超出范围
        if(n<0)
        {
            x=1/x;
            m=-m;
        }

        long double sum=x;
        double ans=1;
        while(m>0)
        {
            if(m%2==1)
                ans=ans*sum;
            sum=sum*sum;
            m/=2;
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值