pip安装iterstrat.ml_stratifiers import MultilabelStratifiedKFold, MultilabelStratifiedShuffleSplit

安装方法

pip install iterative-stratification

开源源码

介绍

MultilabelStratifiedKFold是用于多标签多分类的K折交叉验证

from iterstrat.ml_stratifiers import MultilabelStratifiedKFold, MultilabelStratifiedShuffleSplit
# 5折
nfold = 5
kf = MultilabelStratifiedKFold(n_splits=nfold, shuffle=True, random_state=2020)

lr_oof = np.zeros(label.shape)
# 预测结果每个label的概率
lr_predictions = np.zeros((len(test), label.shape[1]))

i = 0
for train_index, valid_index in kf.split(train_df, label):
    X_train, label_train = train_df[train_index], label[train_index]
    X_valid, label_valid = train_df[valid_index], label[valid_index]

    base = LogisticRegression(C=1)
    model = OneVsRestClassifier(base, n_jobs=20)
    model.fit(X_train, label_train)
	# 返回label的概率
    probality = model.predict_proba(X_valid,)
	print(probality)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值