深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?
目录
引言
在非时间序列的回归任务中,深度学习和机器学习都是常用的方法。为了进一步提升模型的性能,可以通过改进数据处理、数据增强、特征选择、模型选择、模型正则化与泛化、优化器、学习率、超参数调优等方面,来提升模型的性能和可解释性。
1 数据预处理
提高数据质量和进行恰当的数据预处理对提升模型性能至关重要。
- 异常值处理:检测和处理异常值,防止对模型造成影响。
- 数据清洗:纠正在数据中的不一致性和错误。
- 处理不平衡数据:重采样策略,如SMOTE或随机过/欠采样。
- 缺失值处理:填补缺失值或使用模型处理缺失数据。
- 数据规范化:归一化或标准化数据。
- 数据离散化:对连续变量进行分桶操作。
- 特征编码:对类别型特征使用独热编码或标签编码。
- 多尺度特征:创建不同尺度的特征表示形式。
- 特征构造:创建新特征来增强现有数据集。
- 特征交互:考虑特征之间的交互作用。
2 数据集增强
通过生成合成数据或变形现有数据来拓展数据集,使模型能够从更多样的情况中学习。
- 数据扩张:人工生成新样本(基于已知样本特征的数据生成技术)。
- 过采样:复制少数类样本。
- 欠采样:减少多数类样本。
- 加权重采样:依据类的不平衡程度加权样本。
- 生成对抗网络(GAN):生成新的数据点增强数据集。
- 模拟数据生成:使用已知分布生成新数据点。
- 多样本合成:融合现有数据点生成新样本。
- 自动