1.顺序写
现在大部分企业仍然用的是机械结构的磁盘,如果把消息以随机的方式写入到磁盘,那么磁盘首先要做的就是寻址,也就是定位到数据所在的物理地址,在磁盘上就要找到对应的柱面、磁头以及对应的扇区;这个过程相对内存来说会消耗大量时间。
为了规避随机读写带来的时间消耗,kafka采用顺序写的方式存储数据,那么只用按顺序上一条消息后添加就行。但即使这样,频繁的I/O操作仍然会造成磁盘的性能瓶颈
2.零拷贝
消息从发送到落地保存,broker维护的消息日志本身就是文件目录,每个文件都是二进制保存,生产者和消费者使用相同的格式来处理。在消费者获取消息时,服务器先从硬盘读取数据到内存,然后把内存中的数据原封不动的通过socket发送给消费者。虽然这个操作描述起来很简单,但实际上经历了很多步骤(多次拷贝)。
- 操作系统将数据从磁盘读入到内核空间的页缓存
- 应用程序将数据从内核空间读入到用户空间缓存中
- 应用程序将数据写回到内核空间到socket缓存中
- 操作系统将数据从socket缓冲区复制到网卡缓冲区,以便将数据经网络发出
通过“零拷贝”技术,可以去掉这些没必要的数据复制操作,同时也会减少上下文切换次数。现代的unix 操作系统提供一个优化的代码路径,用于将数据从页缓存传输到socket;
- 在Linux中,是通过sendfile系 统调用来完成的。
- Java提供了访问这个系统调用的方法:FileChannel.transferTo API
使用sendfile,只需要一次拷贝就行,允许操作系统将数据直接从页缓存发送到网络上。所以在这个优化的路径中,只有最后一步将数据拷贝到网卡缓存中是需要的
3.页缓存
页缓存是操作系统实现的一种主要的磁盘缓存,但凡设计到缓存的,基本都是为了提升i/o性能,所以页缓存是用来减少磁盘I/O操作的。
磁盘高速缓存有两个重要因素:
- 第一,访问磁盘的速度要远低于访问内存的速度,若从处理器L1和L2高速缓存访问则速度更快。
- 第二,数据一旦被访问,就很有可能短时间内再次访问。正是由于基于访问内存比磁盘快的多,所以磁盘的内存缓存将给系统存储性能带来质的飞越。
当一个进程准备读取磁盘上的文件内容时, 操作系统会先查看待读取的数据所在的页(page)是否在页缓存(pagecache)中
- 如果存在(命中)则直接返回数据, 从而避免了对物理磁盘的I/0操作;
- 如果没有命中, 则操作系统会向磁盘发起读取请求并将读取的数据页存入页缓存, 之后再将数据返回给进程。
同样,如果一个进程需要将数据写入磁盘, 那么操作系统也会检测数据对应的页是否在页缓存中。如果不存在, 则会先在页缓存中添加相应的页, 最后将数据写入对应的页。 被修改过后的页也就变成了脏页, 操作系统会在合适的时间把脏页中的数据写入磁盘, 以保持数据的一致性
Kafka中大量使用了页缓存, 这是Kafka实现高吞吐的重要因素之一 。 虽然消息都是先被写入页缓存, 然后由操作系统负责具体的刷盘任务的, 但在Kafka中同样提供了同步刷盘及间断性强制刷盘(fsync), 可以通过 log.flush.interval.messages 和 log.flush.interval.ms 参数来控制。
同步刷盘能够保证消息的可靠性,避免因为宕机导致页缓存数据还未完成同步时造成的数据丢失。但是实际使用上,我们没必要去考虑这样的因素以及这种问题带来的损失,消息可靠性可以由多副本来解决,同步刷盘会带来性能的影响。 刷盘的操作由操作系统去完成就行了。