509. 斐波那契数
// 五部曲
// 1、确定dp的含义 //dp是斐波那契数列数组
// 2、确定递推公式 //fb[i] = fb[i-1]+fb[i-2]
// 3、根据递推公式,初始化dp数组 //fb[0]=1,fb[1]=1
// 4、dp数组的遍历顺序 //正向
// 5、打印dp数组,debug
class Solution {
public:
int fib(int n) {
vector<int> fb;
fb.push_back(0);
fb.push_back(1);
for (int i=2; i<=n; i++){
fb.push_back(fb[i-1]+fb[i-2]);
cout << "fb" << i <<" = "<<fb[i] <<endl;
}
return fb[n];
}
};
最小花费爬楼梯
// 1、dp[i]的含义是到达第i层所需的最小总花费
// 2、dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])
// 3、dp[0]=0, dp[1]=0
// 4、从前往后遍历
// 5、打印dp
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp;
dp.push_back(0);
dp.push_back(0);
for (int i=2; i<cost.size()+1; i++){
dp.push_back(min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]));
}
return dp.back();
}
};
62. 不同路径
// 1、dp[i][j]数组表示到到当前点i,j的位置有多少种路径
// 2、dp[i][j] = dp[i-1][j] + dp[i][j-1] 到达当前点的路径总数等于i,j点上方一个单位的点,和左方点的路径的总和。
// 3、初始化,应该以左上为中心初始化其右侧和下方所有点。
// 4、前向传递i, j 都增大
// 5、打印dp
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n));
//初始化
for (int i=0; i<m; i++){
dp[i][0] = 1;
}
for (int j=0; j<n; j++){
dp[0][j] = 1;
}
for (int i=1; i<m; i++){
for (int j=1; j<n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
不同路径2
// 1、dp[i][j], 到达i,j的不同路径总和
// 2、dp[i][j] = dp[i-1][j]+dp[i][j-1]
// 3、初始化,将第一行和第一列所有非障碍元素初始化为1,障碍元素初始化为0
// 4、正向
// 5、打印dp
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(); //行
int n = obstacleGrid[0].size(); //列
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i=0; i<m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j=0; j<n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
for (int i=1; i<m; i++){
for (int j=1; j<n; j++){
if (obstacleGrid[i][j] == 1){
dp[i][j] = 0;
}
else{
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
for (int i=0; i<m; i++){
for (int j=0; j<n; j++){
cout << dp[i][j];
}
cout << endl;
}
return dp[m-1][n-1];
}
};
看清了是有obstacle的地方为1.