动态规划预习

509. 斐波那契数

// 五部曲
// 1、确定dp的含义      //dp是斐波那契数列数组
// 2、确定递推公式      //fb[i] = fb[i-1]+fb[i-2]
// 3、根据递推公式,初始化dp数组    //fb[0]=1,fb[1]=1
// 4、dp数组的遍历顺序  //正向
// 5、打印dp数组,debug
class Solution {
public:
    int fib(int n) {
        vector<int> fb;
        fb.push_back(0);
        fb.push_back(1);
        for (int i=2; i<=n; i++){
            fb.push_back(fb[i-1]+fb[i-2]);
            cout << "fb" << i <<" = "<<fb[i] <<endl;
        }
        return fb[n];
    }
};

最小花费爬楼梯

// 1、dp[i]的含义是到达第i层所需的最小总花费
// 2、dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])
// 3、dp[0]=0, dp[1]=0
// 4、从前往后遍历
// 5、打印dp
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp;
        dp.push_back(0);
        dp.push_back(0);
        for (int i=2; i<cost.size()+1; i++){
            dp.push_back(min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]));
        }
        return dp.back();
    }
};

62. 不同路径

// 1、dp[i][j]数组表示到到当前点i,j的位置有多少种路径
// 2、dp[i][j] = dp[i-1][j] + dp[i][j-1] 到达当前点的路径总数等于i,j点上方一个单位的点,和左方点的路径的总和。
// 3、初始化,应该以左上为中心初始化其右侧和下方所有点。
// 4、前向传递i, j 都增大
// 5、打印dp
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n));
        //初始化
        for (int i=0; i<m; i++){
            dp[i][0] = 1;
        }
        for (int j=0; j<n; j++){
            dp[0][j] = 1;
        }
        for (int i=1; i<m; i++){
            for (int j=1; j<n; j++){
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

不同路径2

// 1、dp[i][j], 到达i,j的不同路径总和
// 2、dp[i][j] = dp[i-1][j]+dp[i][j-1]
// 3、初始化,将第一行和第一列所有非障碍元素初始化为1,障碍元素初始化为0
// 4、正向
// 5、打印dp
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size(); //行
        int n = obstacleGrid[0].size(); //列
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i=0; i<m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
        for (int j=0; j<n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

        for (int i=1; i<m; i++){
            for (int j=1; j<n; j++){
                if (obstacleGrid[i][j] == 1){
                    dp[i][j] = 0;
                }
                else{
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
        for (int i=0; i<m; i++){
            for (int j=0; j<n; j++){
                cout << dp[i][j];
            }
            cout  << endl;
        }
        return dp[m-1][n-1];
    }
};

看清了是有obstacle的地方为1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值