一、数组
(1)关于数组
- 计算机会为数组在内存中分配一段 连续 的内存空间
- 计算机会记录下数组在内存的起始位置地址,即数组索引为0的地址
- 数组的元素是多个相同数据类型数据按照一定的顺序(有序)排列的集合
(2)数组的四种操作方式
- 读取元素
已知元素在数组中的索引,按位置查:内存地址+索引,时间复杂度O(1) - 查找元素
查询数组中的某个元素的值:沿着数组逐个比对,时间复杂度O(N) - 删除元素
数组连续,某个元素被删除会由后面的元素向前移动补全位置,线性时间复杂度,当删除元素是数组第一个元素,最大为O(N) - 添加元素
数组连续,添加某个元素,该位置元素集体向后移动,腾出位置给新来的元素,线性时间复杂度,当往第一个位置添加元素时,最大为O(N)
(3)与数组相关的算法题
1.寻找数组的中心索引
题目描述:
给你一个整数数组 nums ,请计算数组的 中心下标 。数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。
如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1 。
解题
//解题思路:先计算数组全部元素的和,然后从左边遍历,如果左元素和 *2+当前值=总和,则返回当前元素索引
public static int pivotIndexNum(int[] nums){
int sumAll = 0;
int sumHalf = 0;
for (int i = 0; i<nums.length; i++){
sumAll += nums[i];
}
for (int i = 0; i<nums.length;i++){
if (sumHalf*2 +nums[i]== sumAll){
return i;
}
sumHalf += nums[i];
}
return -1;
}
- 搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。请必须使用时间复杂度为 O(log n) 的算法。
暴力解法:
//思路:遍历数组中所有的值,如果值小于等于目标值,返回索引;否则返回数组长度
public static int searchInsert1(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
if (target<=nums[i]){
return i;
}
}
return nums.length;
}
此种解法不适合数组长度非常大的情况,可使用二分查找优化,关于这部分内容在做查找算法的归纳总结时再给出。
3. 合并区间
以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间。
相当于求数组的并集
解题
未完待续,吃饭去了。