NLP数据集整理(更新中)

Ⅰ. NLP数据集整理

中英文NLP数据集搜索平台,点击搜索

一、情感分析

ID标题更新日期数据集提供者说明关键字类别备注
1weibo_senti_100k带情感标注新浪微博,正负向评论约各 5 万条微博二分类任务
2Weibo Emotion Corpus2016The Hong Kong Polytechnic University微博语料,标注了7类 emotions: like, disgust, happiness, sadness, anger, surprise, fear。 大小:四万多条微博微博多分类任务论文出处
3NLPCC20132013CCF标注了7 emotions: like, disgust, happiness, sadness, anger, surprise, fear。大小:14 000 条微博, 45 431句子。微博多分类任务
4NLPCC2014 Task12014CCF标注了7 emotions: like, disgust, happiness, sadness, anger, surprise, fear。 大小:20000条微博。微博多分类任务
5NLPCC2014 Task22014CCF标注了正面和负面2种情感。微博2分类任务
6BDCI2018-汽车行业用户观点主题及情感识别2018CCF汽车论坛中对汽车的评论,标注了汽车的诗歌主题:动力、价格、内饰、配置、安全性、外观、操控、油耗、空间、舒适性。每个主题标注了情感标签,情感分为3类,分别用数字0、1、-1表示中立、正向、负向。汽车属性情感分析、主题情感分析
7AI Challenger 细粒度用户评论情感分析2018美团餐饮评论,6个一级属性,20个二级属性,每个属性标注正面、负面、中性、未提及。美团餐饮属性情感分析
8BDCI2019金融信息负面及主体判定2019中原银行金融领域新闻,每个样本标记了实体列表以及负面实体列表。任务是判断一个样本是否是负面以及对应的负面的实体。金融实体情感分析

二、文本分类

三、文本匹配

四、文本摘要

五、机器翻译

六、NER

七、QA

八、知识图谱

九、语料库

十、阅读理解

十一、多模态

1.图片数据集

  • Image Net数据集:http://www.image-net.org

2.视频数据集

  • List item

Ⅱ. 其他内容

一、汉语拆字字典

  1. 英文可以做char embedding,中文可以试试拆字字典
  2. 或使用Bert预训练模型对汉语进行拆字。

二、中文数据集平台

  1. 搜狗实验室,提供了一些高质量的中文文本数据集,多为2012年以前的数据:传送门

  2. 中科大自然语言处理与信息检索共享平台:传送门

三、中文语料小数据

  1. 包含了中文命名实体识别、中文关系识别、中文阅读理解等一些小量数据:传送门

  2. 维基百科数据集:传送门

  3. NLP工具
    (1)THULAC:https://github.com/thunlp/THULAC :包括中文分词、词性标注功能。
    (2)HanLP:https://github.com/hankcs/HanLP
    (3)哈工大:LTP https://github.com/HIT-SCIR/ltp
    (4)NLPIR:https://github.com/NLPIR-team/NLPIR
    (5)jieba:https://github.com/yanyiwu/cppjieba
    (6)百度千言数据集:https://github.com/luge-ai/luge-ai

Ⅲ. 一些有趣的工作

一、物体检测与分割

网址:https://github.com/matterport/Mask_RCNN
在这里插入图片描述

二、样式迁移

网址:https://github.com/zhanghang1989/MXNet-Gluon-Style-Transfer
在这里插入图片描述

三、文字生成图片

网址:https://openai.com/blog/dall-e/
在这里插入图片描述

参考文章:来自简书
参考视频:来自B站

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lambdarw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值