python 股票策略_每季度仓位写回测

本文详细介绍了一种量化投资策略的构建过程,包括仓位信息读取、收盘价处理、股票收益率计算、策略运行及评判指标设定。通过逐步建仓、货币基金配置等方式,实现了策略的动态调整,并最终通过最大回撤、真实收益等指标进行策略效果评估。
摘要由CSDN通过智能技术生成
1- 读仓位信息:

(1)先简单存到dic中,时间是倒序,在构造time_list中reverse即可
(2) str,int转换 int(''.join(str1.split('-'))

def read_date(file_name):
    df_all = pd.read_excel(file_name+'.xlsx',header=None)

    df_all = df_all.dropna(axis=0,how='all')
    df_all.columns = ['股票代码','股票名称','占基金净值比(%)']
    df_all = df_all.reset_index(drop=True)
    judge = df_all[df_all.iloc[:,0] == '股票代码']

    dic = {}
    for i,s_index in enumerate(judge.index):
        time = df_all['股票代码'].iloc[s_index-1]
        time = ''.join(time.split('-'))
        if s_index != judge.index[-1]:
            df_temp = df_all.iloc[s_index+1:judge.index[i+1]-1,:]
        else:
            df_temp = df_all.iloc[s_index+1:,:]
        dic[time] = df_temp

    return dic
2- 读取收盘价:

取出来后的数据转格式:
df_close_f = df_close.pivot(index='时间',columns='股票代码',values='CLOSE')
取tb_object_1425 赋权收盘价,代码略

3- 计算股票端收益率:

(1) df.pct_change(1)计算股票个券收益率
(2) 用np.dot(df_r,df_pos) 矩阵计算,得到股票端收益率
(3) 用矩阵计算要实现对齐数据s_index = df_pos['股票代码'] \ df_r = df_r.loc[:,s_index]
或用自定义函数ircp.ORDER_LIST(): df = df.set_index(target_columns) \ df = df.loc[s_index,:] \ df = df.reset_index()

def get_stock_r(dic, dic_close):
    time_list = list(dic.keys())
    time_list.reverse()

    dic_stock_r  ={}
    for time  in time_list:
        df_pos = dic[time]
        df_pos = df_pos.dropna()
        df_close = dic_close[time]
        df_r = df_close.pct_change(1)
        df_r = df_r.dropna()

        # df_r的 columns 和 df_pos 的index 要匹配
        s_index = df_pos['股票代码']
        df_r = df_r.loc[:,s_index]

        # 提高计算精度,收益率乘以100
        np_stock_r = np.dot(np.array(df_r), np.array(df_pos['占基金净值比(%)']))
        df_stock_r = pd.DataFrame(np_stock_r,index=df_r.index,columns=['stock_r'])
        dic_stock_r[time] = df_stock_r

    return dic_stock_r
4- 运行策略:

(1)逐渐建仓 仓位 np.linspace(0,0.8,len(xxx)
(2)非满仓下认为投货币基金
(3)series 是对应位置加减,dataframe与series运算.add, .sub , .div 再复杂的运算可转为array,进行换算, 注意换算后是否要转置

def run_strategy(dic_stock_r, s_date):
    time_list = list(dic_stock_r.keys())
    start_date = int(time_list[0])
    end_date = ircp.CLOSE_DATE(s_date,freq='quarter')
    money_fund = 。。。

    df_r = pd.DataFrame()   # 记录最后的总收益
    for time in time_list:
        df_stock_r = dic_stock_r[time]
        df_stock_r.index = df_stock_r.index.astype(int)
        df_fund_r = money_fund.loc[df_stock_r.index, 'N_RETURN']
        df_fund_r = (df_fund_r - 1) * 100  # 提高计算精度,收益率乘以100
        # 第一期逐渐建仓
        if time == time_list[0]:
            # 期末仓位0.8,期间仓位逐渐递增
            # 是占净值的比例,要根据0.8折算
            stock_pos = np.linspace(0,0.8,len(df_stock_r))
            fund_pos = 1-stock_pos
            df_r_temp = np.array(df_stock_r.T)*stock_pos/0.8 + np.array(df_fund_r.T)*fund_pos
            df_r_temp = pd.DataFrame(df_r_temp.T,index=df_stock_r.index,columns=['r'])
        else:
            # 0.8的股票仓位 0.2 的货币基金仓位 是占净值的比例,不用再乘以0.8
            df_r_temp = (df_stock_r ).add(df_fund_r * 0.2,axis=0)
            df_r_temp.columns = ['r']
        df_r = pd.concat([df_r,df_r_temp],axis=0)
        print(time)
    print('整体收益率提取完成')
    return df_r
5- 策略评判:

(1)最大回撤
(2)真实收益
(3)基准
(4)胜率
(5)平均年化收益率

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值