【锂电池】建模基础

常见模型类型

锂电池模型

实验/电路模型

实验(经验)模型
  • 采用多项式、函数拟合实验数据
  • 精度最低
  • 参数没有物理意义;随着对象的老化或温度变化,模型可能会越来越不准确
电路模型
  • 使用常见电容、电压源、电阻表示电池模型
  • 容量衰减:电容线性减少
  • 温度影响:电阻、电容进行组合
  • 利用实验数据不断精确电路参数

单粒子模型

  • 每个电极表示为单个粒子模型
  • 忽略粒子间浓度和电势影响
  • 球面坐标使用fick定律
  • 球表面使用BV方程
  • 可快速模拟,初步加入物理约束

伪二维模型(P2D)

  • 固相扩散方程(锂浓度)
  • 液相扩散方程(锂浓度)
  • 固相电势方程
  • 液相电视方程
  • 电极材料颗粒表面电化学反应 BV方程(联系锂浓度和电势关系)
  • 引入开路电位
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OEasUWVv-1650289557538)(https://note.youdao.com/yws/res/197/WEBRESOURCE11a0f97eda4a9bbc1c444c036602d3cc)]

传统仿真方法

传统求解器

  • 有限差分、有限体积、有限元方法
  • 具有鲁棒性
  • 涉及大量计算,难以用单片机等有限资源环境
  • 大部分投入使用的商业化计算方案是冗余,为了用最底限度的用户数据进行计算
  • 没有利用底层结构和物理化学特性

传统求解P2D

通常是使用有限差分,将空间维度x和r离散化,从而消除空间导数

早期降维使用直线法,将PDE变成以时间为唯一自变量的一阶微分代数方程组(DAEs),从而将系统转化为初值问题(IVP)。

采用更先进的时间步进算法如DASSL和DASKR,但时间导数的初始值必须人为指定,并且需要满足代数方程,增加了难度。提供一致的初始条件具有难度,也有许多相关的工作。

降阶方法(ROM)

传统方法在参数估计、优化和实时控制方面开销大,速度慢。
适当的正交分解proper orthogonal decomposition(POD)减少模拟的状态总数、拟线性化和Padé 逼近(有理多项式近似法。帕德近似往往比截断的泰勒级数准确)。基于伽辽金Galerkin方法(以上均无法处理非线性参数?)

但是缺少的信息除了让精度变低之外,还可能会使得结果无效。//所以可以用基于chebychve的polynomial的伽辽金方法,再用高斯过程。

特定的降阶技术只对某些类型的问题有用。许多(虽然不是全部)方法只能用于线性系统 。不能用于描述许多工程系统的非线性模型,包括电池模型

非线性系统可以通过在参考点附近线性化来简化。然而,这种线性化在显著偏离参考条件的情况下是无效的。POD模型需要严格的数值解,而任何边界条件、初始条件、参数值发生变化的时候,则需要重构POD模型,因此提升的计算成本会抵消掉本身的计算优势。此外,虽然POD方法被报道对ode非常有用,但对于电池模型产生的大量病态DAEs, POD方法不能提供相同的CPU时间减少

微分代数方程(ADEs)就是几个微分方程和纯代数方程(没有导数)组成的一个系统。和偏微分方程类似,微分代数方程也很难找到精确的结果。方程中出现的未包含其导数的变量称为代数变量,代数变量的存在意味着不能将这些方程记为显式形式

y′=f(t,y)

可表示为

f(t,y,y′)=0

P2D固相简化

将伪二维模型中的半径维度r使用抛物线轮廓近似,将固相浓度近似为一个二阶多项式来消除控制方程的径向依赖性。可以提高阶数获得精度。

利用固相浓度体积平均方法,将浓度分为两个值,平均浓度和表面浓度,可以简化过程,并且变成只带时间导数。在低速和长期情况下是有效的,在此论文中使用,但即使这样还是有数量很多的DAEs需要解。

坐标变换

将原本[0, lp+ls+ln]的空间坐标域改为了[0, 1]。阳极、阴极、隔膜区域均为同一个坐标域,但并不意味着增加了一个维度来分别表示他们。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-drTIaCUf-1650289557540)(https://note.youdao.com/yws/res/325/WEBRESOURCEa044c176840d7282fff764097c2788d1)]

为此需要进行坐标转化,转换之后,三个区域使用不同的坐标系(X1、X2、X3)表示,取值范围均为[0, 1]。

但同时,例如浓度C将会需要依据公式所属区域,区分参数Cp,Cn,Cs

其他公式也会依据此进行坐标变换,并依据区域分出多个参数。

正交配置(orthogonal collocation)方法

对x方向进行离散化,以实现有效的自适应时间求解器。

对每个关注的变量进行谱方法逼近

u(X,t)为关注的变量,T(X)是具有齐次边界条件的实验函数,F(X,t)是用来满足时间依赖边界条件的函数。B(t)为实验函数的系数。唯实验函数的唯一要求是线性无关。

实验函数的选择会影响最终精度,一般选用余弦函数且边界条件为线性二次项。对于具有非齐次边界条件的变量,在近似解中附加线性项和/或二次项以满足边界条件

利用边界条件的连续性可以消掉部分变量,使用加权残差法Method of Weighted Residuals (MWR)确定系数值,细分有配点法、正交配点法等。

没有要求不同区域的变量要用相同的项数近似。但是,一个区域中的所有变量必须用相同数量的项表示

一旦确定了系数,未知变量就由单元格中任意位置有效的连续函数表示。这与使用有限差分法得到的解不同,在有限差分法中,变量仅在离散节点点处确定,需要插值方法来找到两个节点点之间的解。

使用正交配置需要更复杂的方程,但是需要解的DAE总个数减少。

可移植性:

这种重新表述对任何方程中使用的任何参数的形式都不作任何假设。没有要求扩散系数和电导率都是常数或线性的,使用扩散系数作为电解质浓度和温度的函数已经获得了成功的结果。该模型也足够灵活,可以在恒流、恒电位和恒功率条件下工作,甚至连续的电池充放电循环。这个模型也不假设特定的化学成分,并且已经被证明对于不同的化学成分包括各种开路电位和电池设计参数都是稳健的。重要的是,由于我们选择了0到1区域内的多项式,通过增加级数中的项数,可以在任何条件下获得全局收敛的轮廓线。

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值