【PyCharm】将包含多个参数的 shell 脚本配置到执行文件来调试 Python 程序

要配置 PyCharm 以使用包含多个参数的 shell 脚本(如 run.sh)来调试 Python 程序,您可以按照以下步骤操作:

  1. 创建一个新的运行/调试配置
    • 在 PyCharm 中,点击“运行”菜单旁边的齿轮图标,选择“编辑配置”(或使用快捷键 Ctrl+Shift+Alt+S)。
    • 点击左上角的“+”号,选择“Python”。
  2. 配置脚本参数
    • 在新创建的配置中,您需要设置“脚本路径”为您的 Python 脚本路径(在这个例子中是 inference_pangu_vllm.py)。
    • 在“参数”字段中,您需要输入所有传递给 Python 脚本的参数。这些参数可以从 run.sh 脚本中的 command 变量获得。您可以将这些参数复制并粘贴到 PyCharm 的参数字段中,确保格式正确。
  3. 设置环境变量
    • 在 PyCharm 的运行/调试配置中,有一个“环境变量”部分。在这里,您需要添加 run.sh 脚本中设置的所有环境变量,例如 PRECHECKPOINT_PATH, VOCAB_PATH, MICRO_BATCH_SIZE 等。
  4. 配置工作目录
    • 在“工作目录”字段中,设置为您项目的工作目录,通常是 PROJECT_DIR 指定的路径。
      以下是一个示例配置:
  • 脚本路径: ./pangu/torch/streaming_decode/inference_pangu_vllm.py
  • 参数:
    --num-layers 62 
    --hidden-size 6144 
    --ffn-hidden-size 27648 
    --num-attention-heads 48 
    --group-query-attention 
    --num-query-groups 8 
    --swiglu 
    --untie-embeddings-and-output-weights 
    --disable-bias-linear 
    --position-embedding-type rope 
    --rotary-base 1000000 
    --rope-cache 
    --use-rope-fp32 
    --use-fused-rotary-pos-emb 
    --use-rotary-position-embeddings 
    --shape-format BSH --use-flash-attn --sparse-mode 2 
    --tokenizer-type PretrainedFromHF 
    --tokenizer-not-use-fast 
    --padded-vocab-size 165664 
    --fp16 
    --tokenizer-name-or-path ${VOCAB_PATH} 
    --use_prefix_txt_for_prompt 
    --eos_id 165569 
    --actual-vocab-size 165664 
    --attention-softmax-in-fp32 
    --normalization RMSNorm 
    --norm-epsilon 1e-5 
    --use-fused-rmsnorm 
    --use-gemma-post-norm 
    --max-position-embeddings 32768 
    --no-top-query-layer 
    --make-vocab-size-divisible-by 16 
    --language ${LANGUAGE} 
    --nlp-only 
    --use-act-seq-len --use_FIA --inner_precise 0  
    --kvselect_mode topk
    
  • 环境变量:
    SCRIPT_DIR=/path/to/script_dir
    PROJECT_DIR=/path/to/project_dir
    PRECHECKPOINT_PATH=/data/models/Pangu_38B_3.1.34.B101_32K/Deploy/Checkpoint
    VOCAB_PATH=/path/to/resource/vocab/pangu_tokenizer_llama3_expand_13b_v2_deleted
    MICRO_BATCH_SIZE=1
    EN_SEQ_LEN=32000
    DE_SEQ_LEN=40
    RUN_SCRIPT=./pangu/torch/streaming_decode/inference_pangu_vllm.py
    DISTRIBUTED_ARGS=...
    INFERENCE_ARGS=...
    OUTPUT_TEXT_DIR=...
    LANGUAGE=...
    
  1. 启动调试
    • 配置完成后,点击 PyCharm 中的 debug 按钮(通常是绿色甲虫图标)。
      请注意,您可能需要根据实际情况调整路径和环境变量。如果 DISTRIBUTED_ARGSINFERENCE_ARGS 在其他地方定义,您也需要将它们添加到环境变量或参数中。
### 如何在 Visual Studio Code 中设置和使用 Python 文件参数 #### 使用命令行传递参数 可以在终端通过命令行向Python脚本传递参数。假设有一个名为`script.py`的文件,可以通过如下方式来执行并传入参数: ```bash python script.py arg1 arg2 ``` 这种方式适用于简单的场景,在VSCode中可以直接利用集成终端完成操作[^1]。 #### 修改 launch.json 进行调试时传递参数 对于更复杂的项目或是希望在调试模式下传递参数的情况,则可以编辑`.vscode/launch.json`文件中的配置项实现这一功能。下面是一个具体的例子展示如何为启动配置添加参数: ```json { "version": "0.2.0", "configurations": [ { "name": "Python: Current File with Args", "type": "python", "request": "launch", "program": "${file}", "console": "integratedTerminal", "args": ["arg1", "arg2"] } ] } ``` 这段JSON定义了一个新的调试配置,其中包含了两个字符串形式的参数(`arg1`, `arg2`),它们会在程序启动的时候被传递给目标Python文件[^3]。 #### 利用 argparse 库解析参数 为了使编写的Python应用程序能够接收来自外部的输入参数,通常会采用标准库中的`argparse`模块来进行处理。这里给出一段基本代码示例说明其用法: ```python import argparse parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('integers', metavar='N', type=int, nargs='+', help='an integer for the accumulator') parser.add_argument('--sum', dest='accumulate', action='store_const', const=sum, default=max, help='sum the integers (default: find the max)') args = parser.parse_args() print(args.accumulate(args.integers)) ``` 此段代码创建了一个简单的小型CLI应用,它可以从命令行接受整数列表以及一个可选标志位用于指定累加还是取最大值的操作[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值