协程
协程,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程。
协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。
协程的好处:
无需线程上下文切换的开销
无需原子操作锁定及同步的开销
“原子操作(atomic operation)是不需要synchronized”,所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序是不可以被打乱,或者切割掉只执行部分。视作整体是原子性的核心。
方便切换控制流,简化编程模型
高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。
缺点:
无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序
使用yield实现协程操作例子:
__author__ = 'GPF'
# 功能
def consumer(name):
print("--->starting eating apple...")
while True:
apple = yield
print("[%s] is eating apple %s" % (name, apple))
# time.sleep(1)
def producer():
r = con.__next__()
r = con2.__next__()
n = 0
while n < 5:
n += 1
con.send(n)
con2.send(n)
print("\033[32;1m[producer]\033[0m is making apple %s" % n)
if __name__ == '__main__':
con = consumer("gpf")
con2 = consumer("lzb")
p = producer()
看楼上的例子,yield实现的到底算不算一个真正的协程,那得看协程的一个定义标准。协程一个标准定义,即符合什么条件就能称之为协程:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 一个协程遇到IO操作自动切换到其它协程
基于上面这4点定义,我们刚才用yield实现的程并不能算是合格的线程,因为它有一点功能没实现,哪一点呢?
Greenlet
greenlet是一个用C实现的协程模块,相比与python自带的yield,它可以使你在任意函数之间随意切换,而不需把这个函数先声明为generator
__author__ = 'GPF'
# 功能
from greenlet import greenlet
def demo():
print("1")
g2.switch()
print("3")
g2.switch()
def demo2():
print("2")
g.switch()
print("4")
g = greenlet(demo)
g2 = greenlet(demo2)
g.switch()
感觉确实用着比generator还简单了呢,但好像还没有解决一个问题,就是遇到IO操作,自动切换,对不对?
Gevent
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
__author__ = 'GPF'
# 功能
import gevent
def demo():
print(1)
gevent.sleep(2)
print(6)
def demo2():
print(2)
gevent.sleep(1)
print(5)
def demo3():
print(3)
gevent.sleep(0)
print(4)
if __name__ == "__main__":
gevent.joinall([
gevent.spawn(demo),
gevent.spawn(demo2),
gevent.spawn(demo3),
])
## 输出
#1
#2
#3
#4
#5
#6
这里边gevent.sleep(2)可以作为模拟的io请求。
举一个例子,在实际应用中我们可以在爬虫中使用协程。
__author__ = 'GPF'
# 功能
from gevent import monkey; # 因为gevent无法识别urllib下的网络io,所以需要使用monkey 来给io做上标记
import gevent, time
from urllib.request import urlopen
monkey.patch_all() ## 把当前所有程序的io给我单独做上标记
def demo(url):
print("Get:%s" % url, "is readlying")
resp = urlopen(url)
data = resp.read()
print("url size:", len(data))
if __name__ == "__main__":
startTime = time.time()
gevent.joinall([
gevent.spawn(demo, "https://blog.csdn.net/weixin_43947279/article/details/86679333"),
gevent.spawn(demo, "https://blog.csdn.net/weixin_43947279/article/details/86512450"),
gevent.spawn(demo, "https://blog.csdn.net/weixin_43947279/article/details/86481875"),
gevent.spawn(demo, "https://blog.csdn.net/weixin_43947279/article/details/86356373"),
gevent.spawn(demo, "https://blog.csdn.net/weixin_43947279/article/details/85853467"),
])
print("speen:", time.time() - startTime, "s")
这样一来,我们可以做更多的应用,比如之前我们通过多线程来实现过socketServer。接下来 我们使用协程来实现多线程的效果
- 服务端
import gevent import socket from gevent import monkey monkey.patch_all() def server(port): host = "localhost" servers = socket.socket() servers.bind((host, port)) servers.listen(200) while True: cli, adr = servers.accept() gevent.spawn(handl, cli) def handl(conn): try: while True: data = conn.recv(1024) print("server recv:", data) conn.send(data.upper()) if not data: conn.shutdow(socket.SHUT_WR) except Exception as e: print(e) finally: conn.close() if __name__ == '__main__': server(8001)
- 客户端
__author__ = 'GPF' import socket HOST = 'localhost' # The remote host PORT = 8001 # The same port as used by the server # client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client = socket.socket() client.connect((HOST, PORT)) while True: msg = bytes(input(">>:"), encoding="utf8") if not msg: continue client.sendall(msg) data = client.recv(1024) # print(data) print('Received', data) client.close()