Chi-Plots和Kendall Plots

本文解析了Chi-plot与KendallPlots两种统计图表的阅读方法,通过实例说明如何判断变量之间的相关性。Chi-plot通过散点分布识别变量间的线性与非线性关系,而KendallPlots则用于评估变量的独立性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

参照参考文献【1】和【2】

怎么看Chi-plot

在这里插入图片描述
上图中第一列图表示两变量X和Y的散点图,第二列表示对应的Chi-plot。第一行图到第四行图中X,Y的相关性分比为0.0, 0.2, 0.5,和 0.95。由图可知在Chi-plot中,若散点都在两条横线之间,则相关性接近0。在第一条横线上表示正相关,在第三条线下表示负相关。λi表示(Xi,Yi)到数据集中心(以X,Y的中位数表示)的距离。
具体怎么画,可以参照CRAN。

怎么看Kendall Plots

在这里插入图片描述
如上图,左图Y=1-X,右图Y=X,若点落到1:1线上代表两变量独立。

参考文献

【1】https://doi.org/10.1198/000313001317098248
【2】https://doi.org/10.1198/0003130032431

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值