Bootstrap的matlab实现

1.Bootstrap的原理

数据分析需要大量的数据,但如果样本数量很小,如何实现小样本统计值的统计参数,Bootstrap就能帮上大忙。Bootstrap通过对样本数据的不断重复采样,得到每一次采样的统计值,近而估算出我们这个原始小样本的统计参数。数学原理见参考文献【1,2】。下面介绍非参数自举法的一些说明。

2.实现方法

2.1bootstrp函数

MATLAB中的bootstrp函数。nboot代表采样次数,bootfun每次计算的统计值,可以是多个,如@(x)[mean(x) std(x)],d1是原始数据,可以是矩阵,向量。bootstat是每次的计算的抽样数据统计值,bootsam是说明单的是每次抽样出的样本,但以索引形式给出。

[bootstat,bootsam]  = bootstrp(nboot,bootfun,d1,...) 

小例子帮助说明。

y = exprnd(5,100,1);
[bootstat,bootsam] = bootstrp(50, @(x) mean(x), y);
[bootstat,bootsam] = bootstrp(50, @(x) [mean(x) iqr(x)], y);%多个函数同时计算

2.2bootci函数(类似的ibootci

函数的用法和bootstrp类似, 100*(1-alpha) 为置信区间,type为置信区间的计算方法,默认是’bca’方法。

ci = bootci(nboot,{bootfun,...},'alpha',alpha)
ci = bootci(nboot,{bootfun,...},...,'type',type) 

3.参考文献

【1】https://zhuanlan.zhihu.com/p/54201828
【2】https://blog.csdn.net/yuzhiping1/article/details/82989015
【3】https://blog.csdn.net/qq_41218103/article/details/97805926

注①:随机数表也称乱数表,是由随机生成的从0到9十个数字所组成的数表,每个数字在表中出现的次数是大致相同的,它们出现在表上的顺序是随机的。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值