交叉小波分析的解读

通过交叉小波分析,不仅能够分析出信号间的相互关系程度,还可以得到信号在时频空间的相位关系。在变换系数较大的区域代表两信号具有较强的相关性。

在这里插入图片描述

云图代表周期,箭头代表相位关系。黑色粗轮廓表示95%显著性水平,黑色线条为影响锥。向右箭头表示两信号相同,向左箭头表示反相信号;向下箭头表示指数领先于指数,向上箭头表示指数落后于指数。

相关推荐
目录   第一章 概论   1.1 fourier分析小波分析   1.2 积分小波变换和时间-频率分析   1.3 反演公式和对偶   1.4 小波的分类   1.5 多分辨分析、样条及小波   1.6 小波分解与重构   第二章 fourier分析   2.1 fourier变换与fourier逆变换   2.2 连续时间卷积和 函数   2.3 平方可积函数的fourier变换   2.4 fourier级数   2.5 基本收敛定理和poisson求和公式   第三章 小波变换和时间-频率分析   3.1 gabor变换   3.2 短时fourier变换和测不准原理   3.3 积分小波变换   3.4 二进小波和反演   3.5 框架   3.6 小波级数   .第四章 基数样条分析   4.1 基数样条空间   4.2 b-样条及其基本性质   4.3 两尺度关系和插入图形显示算法   4.4 基数样条的b-网表示与计算   4.5 样条逼近公式的构造   4.6 样条插值公式的构造   第五章 尺度函数与小波   5.1 多分辨分析   5.2 有限两尺度关系的尺度函数   5.3 l2(ir)的直接和分解   5.4 小波和它们的对偶   5.5 线性相位滤波   5.6 紧支撑小波   第六章 基数样条小波   6.1 插值样条小波   6.2 紧支撑样条小波   6.3 基数样条小波的计算   6.4 euler-frobenius多项式   6.5 样条小波分解中的误差分析   6.6 全正性、完全振荡及零交叉   第七章 正交小波小波包   7.1 正交小波的例子   7.2 正交两尺度符号的识别   7.3 紧支撑正交小波的构造   7.4 正交小波包   7.5 小波级数的正交分解   注解   附录a   参考文献   索引
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页