持续更新中
这是github大佬的llama3的代码,我继续加上属于我自己的理解
https://github.com/naklecha/llama3-from-scratch
如何token化
special_tokens :token 就是你对自然语言的字符的拆分颗粒度以及拆分方式,在我同类文章当中有所介绍,包括bep算法概略介绍也有。下面代码加载llama3的token,然后自己添加上属于自己的token也就是special_tokens ,一般来说llama3训练主要以英文为主要,但是如果自己想要微调llama3变成中文法语德语的话,那肯定需要加上属于自己语言的token,虽然你不加也可以,原来的token词汇表肯定可以承接世界上所有的计算机语言,因为不管什么语言最终会转化为utf-8编码,但是单独的token训练出来效果会更好,不然你直接丢出一个中文训练集,对于llama来说,假设一个字 “好” 被拆分成3个utf-8编码,3个utf-8编码既承担了原有的英文语义,又要承担中文语义,fineturning的效果大概率不好。添加词汇表的时候,一般只能在最后面添加,因为词汇表其它位置它已经训练过了。
pat_str:就是对一个长文本是怎么拆分的,给出一段文本,“are you ok?” => are,you,ok,?,这就是依据正则表达式进行拆分,中文就是每个字都要拆分,拆分成小字符之后才会对每个单词进行token化。
下面是加载了llama3的词汇表,然后合并自己的special_token,成为了新的token词汇表,然后进行训练的。
from pathlib import Path
import tiktoken
from tiktoken.load import load_tiktoken_bpe
import torch
import json
import matplotlib.pyplot as plt
tokenizer_path = "Meta-Llama-3-8B/tokenizer.model"
special_tokens = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|reserved_special_token_2|>",
"<|reserved_special_token_3|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|reserved_special_token_4|>",
"<|eot_id|>", # end of turn
] + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)]
mergeable_ranks = load_tiktoken_bpe(tokenizer_path)
tokenizer = tiktoken.Encoding(
name=Path(tokenizer_path).name,
pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+",
mergeable_ranks=mergeable_ranks,
special_tokens={token: len(mergeable_ranks) + i for i, token in enumerate(special_tokens)},
)
tokenizer.decode(tokenizer.encode("hello world!"))
如何embedding
大佬写的代码是
embedding_layer = torch.nn.Embedding(vocab_size, dim)
embedding_layer.weight.data.copy_(model["tok_embeddings.weight"])
token_embeddings_unnormalized = embedding_layer(tokens).to(torch.bfloat16)
token_embeddings_unnormalized.shape
embedding层形状为
torch.Size([17, 4096])
我自己画的图,下面是矩阵乘法,因为onehot编码其它都是0,只有一个是1,按照矩阵乘法的定义,这里刚刚好直接取词汇表的指定某一层,就符合矩阵乘法的结果。这里是第7000层即可。