【datawhale】Task3 特征工程

常见的特征工程包括:

  1. 异常处理:
  • 通过箱线图(或 3-Sigma)分析删除异常值;
  • BOX-COX 转换(处理有偏分布);
  • 长尾截断;
  1. 特征归一化/标准化:
  • 标准化(转换为标准正态分布);
  • 归一化(抓换到 [0,1] 区间);
  • 针对幂律分布,可以采用公式:
  1. 数据分桶:
  • 等频分桶;
  • 等距分桶;
  • Best-KS 分桶(类似利用基尼指数进行二分类);
  • 卡方分桶;
  1. 缺失值处理:
  • 不处理(针对类似 XGBoost 等树模型);
  • 删除(缺失数据太多);
  • 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
  • 分箱,缺失值一个箱;
  1. 特征构造:
  • 构造统计量特征,报告计数、求和、比例、标准差等;
  • 时间特征,包括相对时间和绝对时间,节假日,双休日等;
  • 地理信息,包括分箱,分布编码等方法;
  • 非线性变换,包括 log/ 平方/ 根号等;
  • 特征组合,特征交叉;
  • 仁者见仁,智者见智。
  1. 特征筛选
  • 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系
  • 数法/卡方检验法/互信息法;
  • 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有LVM(Las Vegas Wrapper) ;
  • 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;
  1. 降维
  • PCA/ LDA/ ICA;
  • 特征选择也是一种降维。

数据类型

train:([‘name’, ‘regDate’, ‘model’, ‘brand’, ‘bodyType’, ‘fuelType’, ‘gearbox’,‘power’, ‘kilometer’, ‘notRepairedDamage’, ‘regionCode’, ‘seller’,‘offerType’, ‘creatDate’, ‘price’, ‘v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’,‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,‘v_14’],dtype=‘object’)
test:[‘name’, ‘regDate’, ‘model’, ‘brand’, ‘bodyType’, ‘fuelType’, ‘gearbox’,‘power’, ‘kilometer’, ‘notRepairedDamage’, ‘regionCode’, ‘seller’,‘offerType’, ‘creatDate’, ‘price’, ‘v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’,‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,‘v_14’],dtype=‘object’

字段表

|  |  ||--|--||  |  |

异常值处理

# 这里我包装了一个异常值处理的代码,可以随便调用。
def outliers_proc(data, col_name, scale=3):
"""
用于清洗异常值,默认用 box_plot(scale=3)进行清洗
:param data: 接收 pandas 数据格式
:param col_name: pandas 列名
:param scale: 尺度
:return:
"""
def box_plot_outliers(data_ser, box_scale):
"""
利用箱线图去除异常值
:param data_ser: 接收 pandas.Series 数据格式
:param box_scale: 箱线图尺度,
:return:
"""
iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
val_low = data_ser.quantile(0.25) - iqr
val_up = data_ser.quantile(0.75) + iqr
rule_low = (data_ser < val_low)
rule_up = (data_ser > val_up)
return (rule_low, rule_up), (val_low, val_up)
data_n = data.copy()
data_series = data_n[col_name]
rule, value = box_plot_outliers(data_series, box_scale=scale)
index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
print("Delete number is: {}".format(len(index)))
data_n = data_n.drop(index)
data_n.reset_index(drop=True, inplace=True)
print("Now column number is: {}".format(data_n.shape[0]))
index_low = np.arange(data_series.shape[0])[rule[0]]
outliers = data_series.iloc[index_low]
print("Description of data less than the lower bound is:")
print(pd.Series(outliers).describe())
index_up = np.arange(data_series.shape[0])[rule[1]]
outliers = data_series.iloc[index_up]
print("Description of data larger than the upper bound is:")
print(pd.Series(outliers).describe())
fig, ax = plt.subplots(1, 2, figsize=(10, 7))
sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
return data_n

特征构造

  1. 树模型使用数据集
  • 使用时间data[‘used_time’]:data[‘creatDate’] - data[‘regDate’],售卖时间-注册时间,反应汽车使用时间,一般来说价格与使用时间成反比;
  • 从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
  • 计算某品牌的销售统计量,同学们还可以计算其他特征的统计量
train_gb = train.groupby("brand")
all_info = {}
for kind, kind_data in train_gb:
info = {}
kind_data = kind_data[kind_data['price'] > 0]
info['brand_amount'] = len(kind_data)
info['brand_price_max'] = kind_data.price.max()
info['brand_price_median'] = kind_data.price.median()
info['brand_price_min'] = kind_data.price.min()
info['brand_price_sum'] = kind_data.price.sum()
info['brand_price_std'] = kind_data.price.std()
info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')
  • 数据分桶
  • 删除原始数据
data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)
# 目前的数据其实已经可以给树模型使用了,所以我们导出一下
data.to_csv('data_for_tree.csv', index=0)
  1. LR NN模型数据集
  • power,取log,归一化
  • kilometer,分桶数据,归一
  • 品牌特征统计量,归一化
  • 类别特征,利用pandas的get_dummies 是实现one hot encode,0-1编码

特征筛选

  • 相关性分析(corr,heatmap)
  • 边界效应
  • 嵌入式特征筛选

知识点总结

  • 将数据转化成更好的表示潜在问题的特征
  • 异常值处理(去除噪声),缺失值填补(加入先验知识)
  • 匿名特征,装箱,groupby,agg进行特征统计,log/exp变换,多个特征的四则运算
  • 非匿名特征,基于信号处理,频域提取,丰度,偏度等构建更为有实际意义的特征;在推荐系统中也是这样的,各种类型点击率统计,各时段统计,加用户属性的统计等等,这样一种特征构建往往要深入分析背后的业务逻辑或者说物理原理,从而才能更好的找到 magic
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
特征工程是指从原始数据中提取特征以供机器学习算法和模型使用的一项工程活动。在Matlab中进行特征工程时,可以使用不同的方法来处理特征。 其中,对于定性特征(也称为分类特征),需要将其转换为定量特征(也称为数值特征),因为某些机器学习算法和模型只接受定量特征的输入。一种常用的方法是使用OneHot编码,即为每一种定性值指定一个定量值。这种方式避免了手动调参的工作,并且对于线性模型来说,使用OneHot编码后的特征可以达到非线性的效果。 另外,在特征工程中还需要注意数值问题。例如,如果输入的数值很大,而有效权值很小,可能导致数值精度问题。在Matlab中,可以通过合适的数值处理方式来解决这个问题,确保数值计算的准确性。 总结起来,在Matlab中进行特征工程包括从原始数据中提取特征,并使用合适的方法处理定性特征和数值精度问题,以提高机器学习算法和模型的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [特征工程系列(一):特征工程的概念/特征的处理](https://blog.csdn.net/Myordry/article/details/105347182)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值