Description
给你一个正整数数组 arr ,请你计算所有可能的奇数长度子数组的和。
子数组 定义为原数组中的一个连续子序列。
请你返回 arr 中 所有奇数长度子数组的和 。
示例 1:
输入:arr = [1,4,2,5,3]
输出:58
解释:所有奇数长度子数组和它们的和为:
[1] = 1
[4] = 4
[2] = 2
[5] = 5
[3] = 3
[1,4,2] = 7
[4,2,5] = 11
[2,5,3] = 10
[1,4,2,5,3] = 15
我们将所有值求和得到 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58
示例 2:
输入:arr = [1,2]
输出:3
解释:总共只有 2 个长度为奇数的子数组,[1] 和 [2]。它们的和为 3 。
示例 3:
输入:arr = [10,11,12]
输出:66
提示:
1 <= arr.length <= 100
1 <= arr[i] <= 1000
Codes
class Solution(object):
def sumOddLengthSubarrays(self, arr):
"""
:type arr: List[int]
:rtype: int
"""
leng = len(arr)
tot = 0
for i in range(leng):
left_odd = (i+1)//2
left_even = i//2 + 1
right_odd = (leng-i)//2
right_even = (leng-i+1)//2
tot += (left_odd * right_odd + left_even * right_even) * arr[i]
return tot
思路
1 在 3 个长度为奇数的数组中出现过:[1], [1, 4, 2], [1, 4, 2, 5, 3];所以最终的和,要加上 1 * 3;
4 在 4 个长度为奇数的数组中出现过:[4], [4, 2, 5], [1, 4, 2], [1, 4, 2, 5, 3];所以最终和,要加上 4 * 4;
2 在 5 个长度为奇数的数组中出现过:[2], [2, 5, 3], [4, 2, 5], [1, 4, 2], [1, 4, 2, 5, 3];所以最终和,要加上 5 * 2;
…
下面的关键就是,如何计算一个数字在多少个奇数长度的数组中出现过?
对于2来说,它可以在它前面选择0,1,2 个数字,选0个即为不选,选1个即为[4,2] ,选2个即为 [1,4,2]
那么每一个数字,在左边选一共有left = i+1 种选择(i为数组下标)
对于2来说,它可以在它后面选择0,1,2个数字,选0即为不选,选1个即为[2,5],选2个即为[2,5,3]
那么每一个数字,在右边选一共有 right = n-i 种选择(n为数组长度)
如果在前面选择了偶数个数字,那么在后面,也必须选择偶数个数字,这样加上它自身,才构成奇数长度的数组;
如果在前面选择了奇数个数字,那么在后面,也必须选择奇数个数字,这样加上它自身,才构成奇数长度的数组;
数字前面共有 left 个选择,其中偶数个数字的选择方案有 left_even = (left + 1) / 2 个,奇数个数字的选择方案有 left_odd = left / 2 个;
数字后面共有 right 个选择,其中偶数个数字的选择方案有 right_even = (right + 1) / 2 个,奇数个数字的选择方案有 right_odd = right / 2 个;
所以,每个数字一共在 left_even * right_even + left_odd * right_odd 个奇数长度的数组中出现过。