牛客练习赛69 (D组合+dp F数论)

题目:D 火柴排队
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

组合数需要求一下,顺便总结一下组合数求的几种方法。
C n m = C n − 1 m + C n − 1 m − 1 C_n^m=C_{n-1}^{m}+C_{n-1}^{m-1} Cnm=Cn1m+Cn1m1,概念展开证明。由于这里只需要求 C n k C_n^{k} Cnk线性推导也可以。

选择i个元素增加k,不改变排名,我们需要知道n个数选择1,2,3…个的时候不改变原始排名的数量。n的范围考虑dp,构造状态dp[i][j][2]:前i个人以i结尾选择了j个并且没有改变原始排名的方法数,第i个元素选没选,那么由dp[i-1][][]转移的条件就出来了。(也可以用滚动数组优化)

#include<cmath>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<istream>
#include<vector>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
typedef double ld;
typedef pair<ll,ll> PP;
const ll mod=998244353;
ll a[5010];
ll C[5010];
ll inv[5010];
ll dp[5010][5010][2];
ll qpow(ll a,ll n) {
    ll res=1;
    while(n) {
        if(n&1)
            res=(res*a)%mod;
        n>>=1;
        a=(a*a)%mod;
    }
    return res;
}
void init(int n) {
    C[0]=1;
    for(int i=1;i<=n;++i) {
        C[i]=(C[i-1]*(n-i+1))%mod;
        ll temp=qpow(i,mod-2)%mod;
        C[i]=(C[i]*temp)%mod;
    }
    for(int i=1;i<=n;++i) {
        inv[i]=qpow(C[i],mod-2)%mod;
    }
}
int main() {
    ll n,d;
    scanf("%lld %lld",&n,&d);
    for(int i=1;i<=n;++i)
        scanf("%lld",&a[i]);
    a[n+1]=1e9+2;
    init(n);
    sort(a+1,a+1+n);
    dp[1][0][0]=dp[1][1][1]=1;
    for(int i=0;i<=n;++i)
        dp[i][0][0]=1;
    for(int i=2;i<=n;++i) {
        for(int j=0;j<=i;++j) {
            if(a[i-1]+d<=a[i])
                dp[i][j][0]=(dp[i-1][j][0]+dp[i-1][j][1])%mod;
            else
                dp[i][j][0]=(dp[i-1][j][0])%mod;
                dp[i][j][1]=(dp[i-1][j-1][0]+dp[i-1][j-1][1])%mod;
        }
    }
    for(int i=1;i<=n;++i) {
        printf("%lld\n",(dp[n][i][0]+dp[n][i][1])*inv[i]%mod);
    }
    return 0;
}

题目:F 解方程
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

这道题目不会推导直接来源于题解。https://ac.nowcoder.com/acm/discuss/blogs?tagId=138721
积性函数的卷积仍为积性函数,也可以自己手动证明一下约数k次幂和是个积性函数拆解一下就可以证明,并且积性函数都可以用线性筛求出。
I d k I d_k Idk单位函数,等于自己本身的值,需要熟悉一下常见的卷积公式。带入其中作替换。形式联想到莫比乌斯反演可以得到新式子。 f ( i ) n q \frac{f(i)}{n^q} nqf(i)由等式右边积性的证明,直接由其性质从质数切入。我们最后作一下变换, f ( i ) = d q − d p d q ∗ n q , d ∣ n , d ∈ p r i m e f(i)=\frac{d^q-d^p}{d^q}*n^q,d|n , d \in{prime} f(i)=dqdqdpnqdn,dprime,可以发现分母和 n q n^q nq的关系,相当于模拟了一遍欧拉筛。
在这里插入图片描述

#include<cmath>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<istream>
#include<vector>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PP;
typedef double ld;
const ll mod=998244353;
const int MAX=1e7+10;
int tot=0;
bool vis[MAX];
int prime[764679];
inline ll qpow(ll a,ll n) {
    ll res=1;
    while(n) {
        if(n&1)
            res=(res*a)%mod;
            n>>=1;
            a=(a*a)%mod;
    }
    return res%mod;
}
ll n,q,p;
ll f[MAX],g[MAX];
void init() {
    memset(vis,false,sizeof(vis));
    f[1]=1;
    vis[1]=vis[0]=true;
    for(int i=2;i<MAX;i++) {
        if(!vis[i]) {
            prime[tot++]=i;
            g[i]=qpow(i,q);f[i]=(g[i]-qpow(i,p))%mod;
        }
        for(int j=0;j<tot;j++) {
            if(i*prime[j]>=MAX)
                break;
            vis[prime[j]*i]=true;
            if(i%prime[j]==0) {
                f[prime[j]*i]=f[i]*g[prime[j]]%mod;
                break;
            }
            f[prime[j]*i]=f[i]*f[prime[j]]%mod;
        }
    }
}
int main() {
    scanf("%lld %lld %lld",&n,&p,&q);
    init();
    ll ans=0;
    for(int i=1;i<=n;++i) {
        f[i]=(f[i]%mod+mod)%mod;
        ans^=f[i];
    }
    printf("%lld",ans);
    return 0;
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值