Atcoder Beginner Contest 200 E. Minflip Summation(概率数论)

题面

一个字符串 T T T 是由一个包含 01? 的字符串 S S S 循环连接 K K K 次获得的。

字符串 T T T 中的每个 ? 都可以换成 01 ,假设 T T T 中一共有 q q q? ,那么把这 q q q? 全部换成 01 后能得到 2 q 2^q 2q 种不同的 T ′ T' T ,现在求
∑ F ( T ′ ) \sum F(T') F(T)

即把这 2 q 2^q 2q F ( T ′ ) F(T') F(T) 算出来并求和。

其中的 F ( T ′ ) F(T') F(T) 定义为:用如下操作把 T ′ T' T 的所有字符变得相同的最小操作数

选择一个区间 [ l , r ] [l,r] [l,r] ,把 T l ′ T'_l Tl T r ′ T'_r Tr 之间(包括端点)的所有字符都异或一.

  • 1 ≤ ∣ S ∣ ≤ 1 0 5 1\leq |S|\leq 10^5 1S105
  • 1 ≤ K ≤ 1 0 9 1\leq K\leq 10^9 1K109

题解

Subtask 1:“无惑”

首先,我们想想对于没有问号的一个序列 S S S 怎么做。

这应该是经典的差分思想了,把整个数组差分,每次操作相当于令两个不同位置分别异或 1 ,即每次操作能消掉两个 1。
我们再定量地分析,不妨设整个数组最终全变成序列的第一个数字(这样一定不会更优了),那么除了开头以外的每一段连续的 1 或 0 都会贡献一个 1(在差分数组上),然后如果最后一个数字与开头不同,那么一定还要在最后填一个 1,为了使数组全部相同。此时,容易发现 1 的总数一定是偶数,因为我们的值从 S 1 S_1 S1 又回到了 S 1 S_1 S1。所以答案就是 1 的个数除以二,即:
∑ i = 1 ∣ S ∣ ( S i = = S i % ∣ S ∣ + 1 ?      0 : 1 ) 2 \cfrac{\sum_{i=1}^{|S|}(S_i==S_{i\%|S|+1}?\;\;0:1)}{2} 2i=1S(Si==Si%S+1?0:1)

那么如果这个序列连续拼接 K K K 个呢?由于最后一个字符刚好和下一个串的第一个字符相邻,容易发现答案是
K ∗ ∑ i = 1 ∣ S ∣ ( S i = = S i % ∣ S ∣ + 1 ?      0 : 1 ) 2 \cfrac{K*\sum_{i=1}^{|S|}(S_i==S_{i\%|S|+1}?\;\;0:1)}{2} 2Ki=1S(Si==Si%S+1?0:1)

即之前的答案直接乘个 K K K 就是了。

Subtask 2:“释疑”

如果有问号呢?

一段连续的问号转变后可能千变万化,毫无内在联系,我们换个角度想。

由于每个问号互不相干,它们变成 1 或 0 的概率也互不相干,即:设 S i = 1 ( / 0 ) S_i=1(/0) Si=1(/0) 为事件 A A A S j = 1 ( / 0 )   ( j ≠ i ) S_j=1(/0)~(j\not=i) Sj=1(/0) (j=i) 为事件 B B B ,则 P ( A ∣ B ) = P ( A ) , P ( B ∣ A ) = P ( B ) P(A|B)=P(A),P(B|A)=P(B) P(AB)=P(A),P(BA)=P(B)

那么我们可以分开考虑每相邻两个数不同的概率,然后算出期望不同总数,(设 S S S 中问号个数为 q q q)答案即为
K ∗ E ( ∑ i = 1 ∣ S ∣ ( S i = = S i % ∣ S ∣ + 1 ?      0 : 1 ) ) 2 ∗ 2 q K \cfrac{K*E\Big(\sum_{i=1}^{|S|}(S_i==S_{i\%|S|+1}?\;\;0:1)\Big)}{2}*2^{qK} 2KE(i=1S(Si==Si%S+1?0:1))2qK

现在分情况考虑相邻的数,定义一个函数 f ( i , j ) = f(i,j)= f(i,j)=

  • S i , S j S_i,S_j Si,Sj 其中一个是问号: 1 + 0 2 = 1 2 \frac{1+0}{2}=\frac{1}{2} 21+0=21 (一半的概率不同)
  • S i , S j S_i,S_j Si,Sj 都是问号: 1 + 1 + 0 + 0 4 = 1 2 \frac{1+1+0+0}{4}=\frac{1}{2} 41+1+0+0=21 (四种情况,两种情况不同)
  • S i , S j S_i,S_j Si,Sj 都不是问号: S i = = S j ?      0 : 1 S_i==S_j?\;\;0:1 Si==Sj?0:1

把分开的期望加起来,答案为:
K ∗ ∑ i = 1 ∣ S ∣ f ( i , i % ∣ S ∣ + 1 ) 2 ∗ 2 q K \cfrac{K*\sum_{i=1}^{|S|}f(i,i\%|S|+1)}{2}*2^{qK} 2Ki=1Sf(i,i%S+1)2qK

CODE

#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 100005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
#define eps 1e-9
LL read() {
	LL f = 1,x = 0;char s = getchar();
	while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
	while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
	return f * x;
}
const int MOD = 1000000007,inv2 = 1000000008/2;
int n,m,i,j,s,o,k;
char ss[MAXN];
int t[MAXN];
int qkpow(int a,LL b) {
	int res = 1;
	while(b > 0) {
		if(b & 1) res = res *1ll* a % MOD;
		a = a *1ll* a % MOD; b >>= 1;
	}return res;
}
int main() {
	scanf("%s",ss + 1);
	n = strlen(ss + 1);
	m = read();
	if(n*1ll*m == 1) {printf("0\n");return 0;}
	int cn = 0,cnt = 0;
	LL cn2 = 0;
	for(int i = 1;i <= n;i ++) if(ss[i] == '?') cnt ++;
	for(int i = 1;i <= n;i ++) {
		int ct = 0,j = i+1; if(j > n) j = 1;
		if(ss[i] == '?') ct ++;
		if(ss[j] == '?') ct ++;
		if(ct) (cn += inv2) %= MOD;
		else {
			if(ss[i] != ss[j]) (cn += 1) %= MOD,cn2 ++;
		}
	}
	cn = cn *1ll* m % MOD;
	int ans = cn *1ll* qkpow(qkpow(qkpow(2,cnt),m),1) % MOD;
	ans = ans *1ll* inv2 % MOD;
	printf("%d\n",ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值