题面
Description
Hzwer成功培育出神牛细胞,可最终培育出的生物体却让他大失所望…
后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变,原先决定神牛特征的基因序列都被破坏了,神牛hzwer很生气,但他知道基因突变的低频性,说不定还有以下优秀基因没有突变,那么他就可以用限制性核酸内切酶把它们切出来,然后再构建基因表达载体什么的,后面你懂的…
黄学长现在知道了N个细胞的DNA序列,它们是若干个由小写字母组成的字符串。一个优秀的基因是两个字符串s1和s2,当且仅当s1是某序列的前缀的同时,s2是这个序列的后缀时,hzwer认为这个序列拥有这个优秀基因。
现在黄学长知道了M个优秀基因s1和s2,它们想知道对于给定的优秀基因,有多少个细胞的DNA序列拥有它。
Input
第一行:N,表示序列数
接下来N行,每行一个字符串,代表N个DNA序列,它们的总长为L1
接下来一个M,表示询问数
接下来M行,每行两个字符串s1和s2,由一个空格隔开,hzwer希望你能在线回答询问,所以s1等于“s1”的所有字符按字母表的顺序向后移动ans位(字母表是一个环),ans为上一个询问的答案,s2同理。例如ans=2 “s1”=qz
则s1=sb。对于第一个询问,ans=0
s1和s2的总长度为L2
Output
输出M行,每行一个数,第i行的数表示有多少个序列拥有第i个优秀基因。
Sample Input
10
emikuqihgokuhsywlmqemihhpgijkxdukjfmlqlwrpzgwrwozkmlixyxniutssasrriafu
emikuqihgokuookbqaaoyiorpfdetaeduogebnolonaoehthfaypbeiutssasrriafu
emikuqihgokuorocifwwymkcyqevdtglszfzgycbgnpomvlzppwrigowekufjwiiaxniutssasrriafu
emikuqihgokuorociysgfkzpgnotajcfjctjqgjeeiheqrepbpakmlixyxniutssasrriafu
emikuqihgokuorociysgfrhulymdxsqirjrfbngwszuyibuixyxniutssasrriafu
emikuqihgokuorguowwiozcgjetmyokqdrqxzigohiutssasrriafu
emikuqihgokuorociysgsczejjmlbwhandxqwknutzgdmxtiutssasrriafu
emikuqihgokuorociysgvzfcdxdiwdztolopdnboxfvqzfzxtpecxcbrklvtyxniutssasrriafu
emikuqihgokuorocsbtlyuosppxuzkjafbhsayenxsdmkmlixyxniutssasrriafu
emikuqihgokuorociysgfjvaikktsixmhaasbvnsvmkntgmoygfxypktjxjdkliixyxniutssasrriafu
10
emikuqihgokuorociysg yxniutssasrriafu
aiegqmedckgqknky eqpoowonnewbq
xfbdnjbazhdnhkhvb qrqgbnmlltlkkbtyn
bjfhrnfedlhrlolzfv qppxpoofxcr
zhdfpldcbjf stsidponnvnmmdvap
zhdfpldcbjfpjmjxdt gdstsidponnvnmmdvap
dlhjtphgfnjtnqnbhxr wxwmhtsrrzrqqhzet
bjfhrnfedlhrlolzfv frqppxpoofxcr
zhdfpldcbjf dponnvnmmdvap
ucyakgyxweakehes nondykjiiqihhyqvk
Sample Output
4
7
3
5
5
1
3
5
10
4
Hint
N<=2000
L1<=2000000
M<=100000
L2<=2000000
题解
有一个很简单的思路:假设以 S 1 S_1 S1 为前缀的串集合为 A A A ,以 S 2 S_2 S2 为后缀的串集合为 B B B ,我们求 ∣ A ∩ B ∣ |A\cap B| ∣A∩B∣.
那么,实践起来,就是字典树统计前缀后缀,字典树上用bitset维护集合。
这样的时间复杂度是 O ( L n 64 ) O(L\frac{n}{64}) O(L64n) ,但是每个节点开个 bitset 空间会炸。
我们再想,该字典树有什么性质?
——只有 O ( n ) O(n) O(n) 个叶子
因为一条无分叉的链上,bitset一定相等,所以,最终整棵树上本质不同的 bitset 最多有 2 n − 1 2n-1 2n−1 个。
我们把一条无分叉链上的 bitset 只存一个,只保留最靠近叶子的那个,其余节点用一个指针指向那一个 bitset ,就可以省下大把空间。
CODE
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<ctime>
#include<queue>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 3200005
#define LL long long
#define ULL unsigned long long
#define UI unsigned int
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
#define eps (1e-4)
#define SI(x) set<x>::iterator
#define MI map<int,int>::iterator
#define BI bitset<2002>
LL read() {
LL f=1,x=0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f*x;
}
void putpos(LL x) {
if(!x) return ;
putpos(x/10); putchar('0'+(x%10));
}
void putnum(LL x) {
if(!x) putchar('0');
else if(x < 0) putchar('-'),putpos(-x);
else putpos(x);
}
void AIput(LL x,char c) {putnum(x);putchar(c);}
int n,m,s,o,k;
BI b[100005];
int tre[MAXN][26],to[MAXN],cnt = 2,cnb;
void ins(int p,char *s,int n,int id) {
for(int i = 1;i <= n;i ++) {
int d = s[i]-'a';
if(!tre[p][d]) tre[p][d] = ++ cnt;
p = tre[p][d];
}
if(!to[p]) {
int t = ++ cnb;
b[t][id] = 1;
to[p] = t;
}
else {
b[to[p]][id] = 1;
}return ;
}
void dfs(int p) {
if(!p) return ;
int sm = 0,t = 0;
if(to[p]) sm = 1,t = to[p];
for(int i = 0;i < 26;i ++) {
if(tre[p][i]) {
dfs(tre[p][i]);
sm ++;
if(sm == 1) t = to[tre[p][i]];
else if(sm == 2) {
b[++ cnb] = b[t] | b[to[tre[p][i]]];
t = cnb;
}
else {
b[t] |= b[to[tre[p][i]]];
}
}
}
to[p] = t;
return ;
}
int query(int p,char *s,int n) {
for(int i = 1;i <= n;i ++) {
int d = s[i]-'a';
if(!tre[p][d]) return 0;
p = tre[p][d];
}return to[p];
}
char ss[MAXN],s1[MAXN],s2[MAXN];
int main() {
n = read();
for(int i = 1;i <= n;i ++) {
scanf("%s",ss + 1);
m = strlen(ss + 1);
ins(1,ss,m,i);
for(int j = 1;j*2 <= m;j ++) swap(ss[j],ss[m-j+1]);
ins(2,ss,m,i);
}
dfs(1);dfs(2);
m = read();
int las = 0;
while(m --) {
scanf("%s",s1 + 1);
scanf("%s",s2 + 1);
s = strlen(s1 + 1);
o = strlen(s2 + 1);
for(int i = 1;i <= s;i ++) s1[i] = (s1[i]-'a'+las) % 26 + 'a';
for(int i = 1;i <= o;i ++) s2[i] = (s2[i]-'a'+las) % 26 + 'a';
for(int i = 1;i*2 <= o;i ++) {
swap(s2[i],s2[o-i+1]);
}
BI as = b[query(1,s1,s)] & b[query(2,s2,o)];
las = as.count();
AIput(las,'\n');
}
return 0;
}