bzoj 4212: 神牛的养成计划 (trie+可持久化trie)

4212: 神牛的养成计划

Time Limit: 10 Sec   Memory Limit: 512 MB
Submit: 112   Solved: 25
[ Submit][ Status][ Discuss]

Description

Hzwer成功培育出神牛细胞,可最终培育出的生物体却让他大失所望......
后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变,原先决定神牛特征的基因序列都被破坏了,神牛hzwer很生气,但他知道基因突变的低频性,说不定还有以下优秀基因没有突变,那么他就可以用限制性核酸内切酶把它们切出来,然后再构建基因表达载体什么的,后面你懂的......
黄学长现在知道了N个细胞的DNA序列,它们是若干个由小写字母组成的字符串。一个优秀的基因是两个字符串s1和s2,当且仅当s1是某序列的前缀的同时,s2是这个序列的后缀时,hzwer认为这个序列拥有这个优秀基因。
现在黄学长知道了M个优秀基因s1和s2,它们想知道对于给定的优秀基因,有多少个细胞的DNA序列拥有它。

Input

第一行:N,表示序列数
接下来N行,每行一个字符串,代表N个DNA序列,它们的总长为L1
接下来一个M,表示询问数
接下来M行,每行两个字符串s1和s2,由一个空格隔开,hzwer希望你能在线回答询问,所以s1等于“s1”的所有字符按字母表的顺序向后移动ans位(字母表是一个环),ans为上一个询问的答案,s2同理。例如ans=2  “s1”=qz
则s1=sb。对于第一个询问,ans=0
s1和s2的总长度为L2

Output

输出M行,每行一个数,第i行的数表示有多少个序列拥有第i个优秀基因。

Sample Input

10
emikuqihgokuhsywlmqemihhpgijkxdukjfmlqlwrpzgwrwozkmlixyxniutssasrriafu
emikuqihgokuookbqaaoyiorpfdetaeduogebnolonaoehthfaypbeiutssasrriafu
emikuqihgokuorocifwwymkcyqevdtglszfzgycbgnpomvlzppwrigowekufjwiiaxniutssasrriafu
emikuqihgokuorociysgfkzpgnotajcfjctjqgjeeiheqrepbpakmlixyxniutssasrriafu
emikuqihgokuorociysgfrhulymdxsqirjrfbngwszuyibuixyxniutssasrriafu
emikuqihgokuorguowwiozcgjetmyokqdrqxzigohiutssasrriafu
emikuqihgokuorociysgsczejjmlbwhandxqwknutzgdmxtiutssasrriafu
emikuqihgokuorociysgvzfcdxdiwdztolopdnboxfvqzfzxtpecxcbrklvtyxniutssasrriafu
emikuqihgokuorocsbtlyuosppxuzkjafbhsayenxsdmkmlixyxniutssasrriafu
emikuqihgokuorociysgfjvaikktsixmhaasbvnsvmkntgmoygfxypktjxjdkliixyxniutssasrriafu
10
emikuqihgokuorociysg yxniutssasrriafu
aiegqmedckgqknky eqpoowonnewbq
xfbdnjbazhdnhkhvb qrqgbnmlltlkkbtyn
bjfhrnfedlhrlolzfv qppxpoofxcr
zhdfpldcbjf stsidponnvnmmdvap
zhdfpldcbjfpjmjxdt gdstsidponnvnmmdvap
dlhjtphgfnjtnqnbhxr wxwmhtsrrzrqqhzet
bjfhrnfedlhrlolzfv frqppxpoofxcr
zhdfpldcbjf dponnvnmmdvap
ucyakgyxweakehes nondykjiiqihhyqvk

Sample Output

4
7
3
5
5
1
3
5
10
4

HINT

N<=2000

L1<=2000000

M<=100000

L2<=2000000

Source

[ Submit][ Status][ Discuss]

题解:trie+可持久化trie

今天的互测题,感觉是道不错的字符串题,不过非官方数据较水,可以用hash过掉。

首先对于读入的字符串排序,然后按照顺序加入trie,对于trie中的每个节点都维护一下排序后的那一段区间可以到达这个点(就是那一段的前缀可以匹配到这里)。

然后按照排好的顺序将每个串反过来,建立可持久化trie。

对于每个询问,我们用前缀在trie上匹配,得到一段合法的区间[l,r],然后在可持久化trie上查询[l,r]区间中可以匹配上的后缀的数量即可。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define N 2000003
using namespace std;
int n,cnt,m,sz,tot,x[N],b[N],c[N]; 
int a[N],ch[N][27],ch1[N][27],size[N],root[N],ls[N],rs[N],l[N],r[N];
char s[N],s1[N],s2[N];
int cmp(int x,int y)
{
	int len=min(r[x]-l[x]+1,r[y]-l[y]+1);
	for (int i=0;i<len;i++)
	 if (a[l[x]+i]!=a[l[y]+i]) return a[l[x]+i]<a[l[y]+i];
	return r[x]-l[x]<r[y]-l[y];
}
void insert(int l,int r,int j)
{
	int now=0;
	for (int i=l;i<=r;i++) {
		int x=a[i];
		if (!ch[now][x]) ch[now][x]=++sz;
		now=ch[now][x];
		ls[now]=min(ls[now],j); rs[now]=max(rs[now],j);
	}
}
void buildtree(int i,int l,int r)
{
	int pre=root[i-1];
	root[i]=++tot; int now=root[i];
	for (int i=r;i>=l;i--) {
		int x=a[i];
		size[now]=size[pre]+1;
		ch1[now][x]=++tot;
		for (int j=1;j<=26;j++)
		 if (j!=x) ch1[now][j]=ch1[pre][j];
		now=ch1[now][x]; pre=ch1[pre][x];
	}
	size[now]=size[pre]+1;
}
int get_pos()
{
	int len=strlen(s1+1);
	int now=0;
	for (int i=1;i<=len;i++) {
		int x=b[i];
		now=ch[now][x];
		if (!now) return -1;
	}
	return now;
}
int find(int i,int j)
{
	int len=strlen(s2+1); 
	bool pd=false;
	for (int k=len;k>=1;k--) {
		int x=c[k];
		if (!pd&&size[ch1[i][x]]==size[ch1[j][x]]||!size[ch1[j][x]]) return 0;
		//cout<<size[ch1[i][x]]<<" "<<size[ch1[j][x]]<<endl;
		if (!pd) i=ch1[i][x]; 
		j=ch1[j][x];
		if(!j) return 0;
		if (!i) pd=true;
		//if (pd) cout<<"!"<<endl;
	}
	if (pd) return size[j];
	return size[j]-size[i];
}
int main()
{
	freopen("xiba.in","r",stdin);
	freopen("xiba.out","w",stdout);
	scanf("%d",&n);
	for (int i=1;i<=n;i++) {
	  scanf("%s",s+1);
	  int len=strlen(s+1);
	  for (int j=1;j<=len;j++) a[++cnt]=s[j]-'a'+1;
	  l[i]=r[i-1]+1; r[i]=cnt;
	}
	for (int i=1;i<=n;i++) x[i]=i;
	sort(x+1,x+n+1,cmp);
	memset(ls,127/3,sizeof(ls));
	for (int i=1;i<=n;i++) {
		int t=x[i];
		insert(l[t],r[t],i);
	}
	for (int i=1;i<=n;i++) 
	  buildtree(i,l[x[i]],r[x[i]]);
	scanf("%d",&m); int lastans=0;
	for (int i=1;i<=m;i++) {
		scanf("%s%s",s1+1,s2+1);
		int len=strlen(s1+1); int len1=strlen(s2+1);
		for (int j=1;j<=len;j++) b[j]=(s1[j]-'a'+1+lastans-1)%26+1;
		for (int j=1;j<=len1;j++) c[j]=(s2[j]-'a'+1+lastans-1)%26+1;
		int t=get_pos(); 
		if (t==-1) {
			lastans=0;
			printf("0\n");
			continue;
		}
		printf("%d\n",(lastans=find(root[ls[t]-1],root[rs[t]])));
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值