【UOJ310,UNR #2】黎明前的巧克力(FWT)

题面

一句话题意:给定 n 个数,你需要找出两个不同且不相交的集合使得它们中数字的异或和相等。求方案数模 998244353 。

n , a i ≤ 1 0 6 n,a_i\leq10^6 n,ai106 .

题解

如果一个集合 S S S 的异或和等于 0 ,那么就对答案有 2 ∣ S ∣ 2^{|S|} 2S 的贡献。下面把多项式乘法定义为异或卷积,那么答案就是
[ [ x 0 ] ] ∏ i = 1 n ( 1 + 2 x a i ) − 1 [[x^0]]\prod_{i=1}^n(1+2x^{a_i})-1 [[x0]]i=1n(1+2xai)1
∏ ( 1 + 2 x a i ) \prod(1+2x^{a_i}) (1+2xai) 如果直接用 FWT 求太慢了,甚至不如 DP 。但是 ( 1 + 2 x a i ) (1+2x^{a_i}) (1+2xai) 只有两项,FWT正变换后的式子可以手推:
∑ S = 0 ( 1 + 2 ⋅ ( − 1 ) ∣ S   &   a i ∣ ) x S \sum_{S=0}(1+2\cdot(-1)^{|S~\&~a_i|})x^S S=0(1+2(1)S & ai)xS

这个式子本身并不重要,我们只需要观察出:每一项只可能是 3 3 3 − 1 -1 1 就足够了,观察出这个结论甚至只需要打表找规律。那么最终的答案多项式 ∏ ( 1 + 2 x a i ) \prod(1+2x^{a_i}) (1+2xai) 的正变换就等于
∑ i = 0 3 w i ( − 1 ) n − w i x i \sum_{i=0}3^{w_i}(-1)^{n-w_i}x^i i=03wi(1)nwixi

考虑怎么得到 w i w_i wi ,我们可以求这个式子的正变换:
∑ i = 1 n ( 1 + 2 x a i ) \sum_{i=1}^n(1+2x^{a_i}) i=1n(1+2xai)

其实就是累积变成求和,正变换为
∑ i = 0 ( 3 w i + ( − 1 ) ⋅ ( n − w i ) ) x i \sum_{i=0}(3w_i+(-1)\cdot(n-w_i))x^i i=0(3wi+(1)(nwi))xi

前面的系数只有 w i w_i wi 一个未知量,我们求出 3 w i − ( n − w i ) 3w_i-(n-w_i) 3wi(nwi) 后就可以得到 w i w_i wi ,然后得到答案多项式。

时间复杂度 O ( n log ⁡ a ) O(n\log a) O(nloga)

CODE

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<random>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN (1<<20|5)
#define LL long long
#define ULL unsigned long long
#define ENDL putchar('\n')
#define DB double
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second 
int xchar() {
	static const int maxn = 1000000;
	static char b[maxn];
	static int pos = 0,len = 0;
	if(pos == len) pos = 0,len = fread(b,1,maxn,stdin);
	if(pos == len) return -1;
	return b[pos ++];
}
//#define getchar() xchar()
LL read() {
	LL f = 1,x = 0;int s = getchar();
	while(s < '0' || s > '9') {if(s<0)return -1;if(s=='-')f=-f;s = getchar();}
	while(s >= '0' && s <= '9') {x = (x<<1) + (x<<3) + (s^48);s = getchar();}
	return f*x;
}
void putpos(LL x) {if(!x)return ;putpos(x/10);putchar((x%10)^48);}
void putnum(LL x) {
	if(!x) {putchar('0');return ;}
	if(x<0) putchar('-'),x = -x;
	return putpos(x);
}
void AIput(LL x,int c) {putnum(x);putchar(c);}

const int MOD = 998244353,inv2 = (MOD+1)/2;
int n,m,s,o,k;
int qm(LL x,int MOD) {return x>=MOD ? x-MOD:x;}
inline void DWTXOR(int *s,int m) {
	for(int k = m;k > 1;k >>= 1) {
		for(int i = 0;i < m;i += k) {
			for(int j = i+(k>>1);j < i+k;j ++) {
				int s0 = s[j-(k>>1)],s1 = s[j];
				s[j] = qm((s0 +0ll+ MOD - s1) , MOD);
				s[j-(k>>1)] = qm((s0 +0ll+ s1) , MOD);
			}
		}
	}
	return ;
}
inline void IDWTXOR(int *s,int m) {
	for(int k = 2;k <= m;k <<= 1) {
		for(int i = 0;i < m;i += k) {
			for(int j = i+(k>>1);j < i+k;j ++) {
				int s0 = s[j-(k>>1)],s1 = s[j];
				s[j-(k>>1)] = qm((s0 +0ll+ s1) , MOD) *1ll* inv2 % MOD;
				s[j] = qm((s0 +0ll+ MOD - s1) , MOD) *1ll* inv2 % MOD;
			}
		}
	}
	return ;
}
int pw[MAXN];
int a[MAXN],b[MAXN];
int main() {
	n = read();
	pw[0] = 1;
	int mx = 0;
	for(int i = 1;i <= n;i ++) {
		pw[i] = pw[i-1] *3ll % MOD;
		a[i] = read(); b[a[i]] += 2; b[0] ++;
		mx = max(mx,a[i]);
	}
	m=1; while(m <= mx) m<<=1;
	DWTXOR(b,m);
	for(int i = 0;i < m;i ++) {
		int nm2 = (b[i]+n)%MOD;
		int c3 = nm2/4,c1 = n-c3;
		b[i] = pw[c3] *1ll* ((c1&1) ? (MOD-1):1) % MOD;
	}
	IDWTXOR(b,m);
	AIput((b[0]+MOD-1)%MOD,'\n');
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值