浅谈群论与Burnside引理

摘要: ( − 1 ) 2 = − 2 (-1)^2=-2 (1)2=2

简介

群不是个集合,是个代数系统。

定义

一个群 < G , o p > <G,op> <G,op> 由一个集合 G G G 和一种针对 G G G元素(不一定是数字)的运算 o p op op (在群中用乘法的一系列记号表示,但不一定是乘法)组成,有时简称群 G G G,并满足以下条件:

  • 对于 ∀ a , b ∈ G   ,   a ⋅ b   ( a   o p   b ) ∈ G \forall a,b\in G~,~a\cdot b~(\mathtt{a~op~b})\in G a,bG , ab (a op b)G ,即封闭性
  • o p op op 运算满足结合律。
  • 存在唯一单位元 e ∈ G e\in G eG 满足 ∀ a ∈ G   ,   a ⋅ e = e ⋅ a = a \forall a\in G~,~a\cdot e=e\cdot a=a aG , ae=ea=a
  • o p op op G G G 中所有元素都有逆元

如果 o p op op 还满足交换律,就叫做交换群(阿贝尔群),整数&加法就是个交换群。

群的阶就是元素的个数,元素 x x x 的阶就是最小的正整数 k k k 满足 x k = e x^k=e xk=e

子群

若群 < H , o p > <H,op> <H,op> 满足 H ⊆ G H\sube G HG ,就是 < G , o p > <G,op> <G,op> 的一个子集。必须注意它得先是个群。

定义 N ( a ) = { x ∣ x ∈ G , x a = a x } N(a)=\{x|x\in G,xa=ax\} N(a)={xxG,xa=ax} ,即能和 a a a 满足交换律的 G G G 的所有元素,则 N ( a ) N(a) N(a) G G G 的一个子群(可证明满足封闭性、单位元存在性与逆元存在性),称为 G G G 的一个正规化子

对于 a ∈ G a\in G aG 和一个子群 H H H,定义 a H = { a h ∣ h ∈ H }   ,   H a = { h a ∣ h ∈ H } aH=\{ah|h\in H\}~,~Ha=\{ha|h\in H\} aH={ahhH} , Ha={hahH} ,那么称子群 a H a − 1 aHa^{-1} aHa1 H H H共轭子群

子群 H H H 与子群 K K K 的交集 H ∩ K H\cap K HK 也是子群。

A = < a > = { a i ∣ i ∈ Z } A=<a>=\{a^i|i\in \Z\} A=<a>={aiiZ} ,则称 A A A循环群 a a a 为生成元。若 a ∈ G a\in G aG A A A 是由 a a a 生成的子群。

陪集分解

G G G 是群,设 H H H G G G 的子群, a ∈ G a∈G aG,定义 H a = { h a ∣ h ∈ H } Ha=\{ha|h∈H\} Ha={hahH},称 H a Ha Ha 是子群 H H H G G G 中的一个右陪集,左陪集定义类似。陪集是个集合,不一定是群。

a , b ∈ G a,b\in G a,bG ,则条件 a ∈ H b ⇔ a b − 1 ∈ H ⇔ H a b − 1 = H ⇔ H a = H b a\in Hb\Leftrightarrow ab^{-1}\in H\Leftrightarrow Hab^{-1}=H\Leftrightarrow Ha=Hb aHbab1HHab1=HHa=Hb

最有用的结论是 H a = H b ⇔ a b − 1 ∈ H Ha=Hb\Leftrightarrow ab^{-1}\in H Ha=Hbab1H 。我们若把满足 H a = H b Ha=Hb Ha=Hb (明显具有传递性)的 a , b a,b a,b 归到一个关于 H H H 的等价类中,称为陪集分解,则 H H H 的所有等价类大小相等,都等于 H H H 的阶。

拉格朗日定理:设 G G G 是有限群, H H H G G G 的子群,则 G G G 的阶一定是 H H H 的阶的倍数,且 ∣ G ∣ ∣ H ∣ \frac{|G|}{|H|} HG 等于 H H H 陪集分解后的等价类个数。

共轭类分解

对于任意的 a , b ∈ G a,b\in G a,bG ,若存在 x ∈ G x\in G xG 满足 b = x a x − 1   ( a = x − 1 b x ) b=xax^{-1}~(a=x^{-1}bx) b=xax1 (a=x1bx) ,则称 a , b a,b a,b 共轭,容易证明共轭关系也具有传递性,因此可以划分等价类(共轭类),进行共轭类分解。

定理 a a a 所在的共轭类的大小等于 ∣ G ∣ ∣ N ( a ) ∣ \frac{|G|}{|N(a)|} N(a)G ,这也说明共轭的两元素的正规化子同阶。

Burnside引理

置换群

一个 定义域和值域相同且有穷 的 一一映射,称为置换

置换乘法,本质是函数的合成,即对于两个置换 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) ( f ⋅ g ) ( x ) = f ( g ( x ) ) (f\cdot g)(x)=f(g(x)) (fg)(x)=f(g(x)) 。由于置换是一一映射,所以置换乘法有逆元。

置换集置换乘法组成的群叫置换群

轨道-稳定子群定理

G G G 是一个置换群,其中每个置换的定义域/值域为 A A A

对于 a ∈ A a\in A aA ,定义 G a = { f ∣ f ∈ G , f ( a ) = a } G^a=\{f|f\in G,f(a)=a\} Ga={ffG,f(a)=a} a a a 的稳定子群。

定义 G ( a ) = { f ( a ) ∣ f ∈ G } G(a)=\{f(a)|f\in G\} G(a)={f(a)fG} ,称为 a a a 的轨道,性质上是 A A A 的子集。

考虑基于 G a G^a Ga 进行陪集分解,令 x , y ∈ G x,y\in G x,yG x G a = y G a xG^a=yG^a xGa=yGa ,那么
y − 1 x ∈ G a   ⇒   ( y − 1 x ) ( a ) = a   ⇒   x ( a ) = y ( a ) y^{-1}x\in G^a ~\Rightarrow~ (y^{-1}x)(a)=a ~\Rightarrow~ x(a)=y(a) y1xGa  (y1x)(a)=a  x(a)=y(a)

也就是说,对于陪集分解后的每一个等价类,都会刚好贡献一个元素到 G ( a ) G(a) G(a) 中, G ( a ) G(a) G(a) 其实就等于 G a G^a Ga 的陪集分解等价类个数,那么根据拉格朗日定理,可得轨道-稳定子群定理
∣ G ∣ = ∣ G a ∣ ∣ G ( a ) ∣ |G|=|G^a||G(a)| G=GaG(a)

伯恩赛德引理

其实就是推式子推出来的,

对于 f ∈ G f\in G fG ,定义 A f A^f Af 表示 A A A f f f 作用下的不动点集合,即满足 a ∈ A   ,   f ( a ) = a a\in A~,~f(a)=a aA , f(a)=a 的所有 a a a 。我们尝试求所有 ∣ A f ∣ |A^f| Af 的求和,中途使用轨道-稳定子群定理:
∑ f ∈ G ∣ A f ∣ = ∑ f ∈ G ∑ a ∈ A [ f ( a ) = a ] = ∑ a ∈ A ∑ f ∈ G [ f ( a ) = a ] = ∑ a ∈ A ∣ G a ∣ = ∣ G ∣ ∑ a ∈ A 1 ∣ G ( a ) ∣ \sum_{f\in G}|A^f|=\sum_{f\in G}\sum_{a\in A}[f(a)=a]\\ =\sum_{a\in A}\sum_{f\in G}[f(a)=a]\\ =\sum_{a\in A}|G^a|\\ =|G|\sum_{a\in A}\frac{1}{|G(a)|} fGAf=fGaA[f(a)=a]=aAfG[f(a)=a]=aAGa=GaAG(a)1

对于右边的这个式子 ∑ 1 ∣ G ( a ) ∣ \sum\frac{1}{|G(a)|} G(a)1 ,每个大小为 x x x 的轨道的 x x x 个元素会分别贡献 1 x \frac{1}{x} x1 ,即每个轨道会贡献 1 1 1 ,所以令 A A A 在置换群 G G G 制约下的总轨道数为 L L L ,则
∑ f ∈ G ∣ A f ∣ = ∣ G ∣ L ⇕ L = 1 ∣ G ∣ ∑ f ∈ G ∣ A f ∣ \sum_{f\in G}|A^f|=|G|L\\ \Updownarrow\\ L=\frac{1}{|G|}\sum_{f\in G}|A^f| fGAf=GLL=G1fGAf

对于 ∀ f ∈ G \forall f\in G fG ,如果我们定义 a a a f ( a ) f(a) f(a) 是同构的,那么 L L L 就是 A A A 中不同构的种类数。 B u r n s i d e \tt Burnside Burnside 引理就是这么用的。

使用时要注意,假若我们对一个序列染色, A A A 就是所有的染色方案集,而不是这个序列的下标集。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值