题面



题解
我们令 d(i)d(i)d(i) 为 iii 位置前比 aia_iai 大的数个数,我们想要的就是 ∑i=1nd(i)\sum_{i=1}^n d(i)∑i=1nd(i) 。
然而我们只能得到 ∑i=1nmax(i−ai,0)\sum_{i=1}^n \max(i-a_i,0)∑i=1nmax(i−ai,0) 。
但是不难发现 d(i)≥max(i−ai,0)d(i)\geq \max(i-a_i,0)d(i)≥max(i−ai,0) 。
所以我们要让两个求和相等,就必须让每个位置的 d(i)=max(i−ai,0)d(i)=\max(i-a_i,0)d(i)=max(i−ai,0) 。把这个条件翻译一下,就是说,每个数前面要么不存在比它大的数,要么存在所有比它小的数。
我们可以考虑从左往右向排列中填数,那么每次只有两种选择,其一是填入比最大值大的一个数,其二是填入 前缀集合∪{
0}\cup\{0\}∪{
0} 的 mex\rm mexmex ,可以利用这个方法判断前 MMM 个是否合法。令 dp[i][j]dp[i][j]dp[i][j] 表示填了第 iii 个数,最大值为 jjj 的方案数,那么
dp[i][j]=0 (j<i)dp[i][j]=dp[i−1][j]+∑k<jdp[i−1][k] dp[i][j]=0~~~~(j<i)\\ dp[i][j]=dp[i-1][j]+\sum_{k<j}dp[i-1][k] dp[i][j]=0 (

这篇博客探讨了一个关于序列的问题,其中目标是计算序列中元素前缀的最大和。通过动态规划的方法,建立了状态转移方程,并给出了网格图行走的直观解释。博主通过计算组合数得出最终答案,并提供了高效的O(n)复杂度代码实现。
最低0.47元/天 解锁文章
339

被折叠的 条评论
为什么被折叠?



