【模拟赛】排队(动态规划)

这篇博客探讨了一个关于序列的问题,其中目标是计算序列中元素前缀的最大和。通过动态规划的方法,建立了状态转移方程,并给出了网格图行走的直观解释。博主通过计算组合数得出最终答案,并提供了高效的O(n)复杂度代码实现。

题面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

题解

我们令 d(i)d(i)d(i)iii 位置前比 aia_iai 大的数个数,我们想要的就是 ∑i=1nd(i)\sum_{i=1}^n d(i)i=1nd(i)

然而我们只能得到 ∑i=1nmax⁡(i−ai,0)\sum_{i=1}^n \max(i-a_i,0)i=1nmax(iai,0)

但是不难发现 d(i)≥max⁡(i−ai,0)d(i)\geq \max(i-a_i,0)d(i)max(iai,0)

所以我们要让两个求和相等,就必须让每个位置的 d(i)=max⁡(i−ai,0)d(i)=\max(i-a_i,0)d(i)=max(iai,0) 。把这个条件翻译一下,就是说,每个数前面要么不存在比它大的数,要么存在所有比它小的数

我们可以考虑从左往右向排列中填数,那么每次只有两种选择,其一是填入比最大值大的一个数,其二是填入 前缀集合∪{ 0}\cup\{0\}{ 0}mex\rm mexmex ,可以利用这个方法判断前 MMM 个是否合法。令 dp[i][j]dp[i][j]dp[i][j] 表示填了第 iii 个数,最大值为 jjj 的方案数,那么
dp[i][j]=0    (j<i)dp[i][j]=dp[i−1][j]+∑k<jdp[i−1][k] dp[i][j]=0~~~~(j<i)\\ dp[i][j]=dp[i-1][j]+\sum_{k<j}dp[i-1][k] dp[i][j]=0    (

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值