学习构造哈夫曼树,这一篇足矣

1.哈夫曼树
在这里插入图片描述

HC=((d,0),(i,10),(a,110),(n,111))

2.如何构造哈夫曼树

构造哈夫曼树非常简单,将所有的节点放到一个队列中,用一个节点替换两个频率最低的节点,新节点的频率就是这两个节点的频率之和。这样,新节点就是两个被替换节点的父节点了。如此循环,直到队列中只剩一个节点(树根)。

  1. 对给定的n个权值{W1,W2,W3,…,Wi,…,Wn}构成n棵二叉树的初始集合F= {T1,T2,T3,…,Ti,…,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。

  2. F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。

  3. F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。

  4. 重复二和三两步,直到集合F中只有一棵二叉树为止。

举个例子:

  • 如图有A,B,C,D共4棵二叉树,其权值分别为5,7,2,13
    在这里插入图片描述
  1. 选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,即A和C,新二叉树的根结点的权值为其左右子树的根结点的权值之和,即2+5=7
    在这里插入图片描述
  2. 继续在此基础上,选择一棵根节点结点权值小的树作为新构造的二叉树的左子树,即B和7,新二叉树的根结点的权值为其左右子树的根结点的权值之和,即7+7=14
    在这里插入图片描述
  3. 继续在此基础上,选择一棵根节点结点权值小的树作为新构造的二叉树的左子树,即D和14,新二叉树的根结点的权值为其左右子树的根结点的权值之和,即13+14=27
    在这里插入图片描述
  4. 此时哈夫曼树构成
  5. 引入二进制编码,各叶子结点的二进制编码如下:D(0),B(10),C(110),(111)

编程题:
1.领会哈夫曼的构造过程以及哈夫曼编码的生产过程
2.构造一棵哈夫曼树,输出对应的哈夫曼编码和平均查找长度
在这里插入图片描述

#include <stdio.h>
#include <string.h>
#define N 50 
#define M 2 * N-1 

typedef struct
{
	char data[5]; 
	int weight; 
	int parent; 
	int lchild; 
	int rchild; 
}HTNode;

typedef struct
{
	char cd[N]; 
	int start; 
}HCode;

void CreateHT(HTNode ht[],int n) 
{
	int i,k,lnode,rnode;
	int min1,min2;
	for (i=0;i<2*n-1;i++) 
		ht[i].parent=ht[i].lchild=ht[i].rchild=-1;
	for (i=n;i<2*n-1;i++) 
	{
		min1=min2=32767; 
		lnode = rnode = -1;
		for(k=0;k<=i-1;k++) 
		if(ht[k].parent==-1) 
		{
		if(ht[k].weight<min1)
			{
				min2=min1;
				rnode=lnode;
				min1=ht[k].weight;
				lnode=k;
			}
		else if(ht[k].weight<min2)
			{
				min2=ht[k].weight;
				rnode=k;
			}
		}
	ht[lnode].parent=i;
	ht[rnode].parent=i;
	ht[i].weight=ht[lnode].weight+ht[rnode].weight;
	ht[i].lchild=lnode;
	ht[i].rchild=rnode;
	}
}

void CreateHCode(HTNode ht[],HCode hcd[],int n) 
{
	int i,f,c;
	HCode hc;
	for(i=0;i<n;i++) 
	{
		hc.start=n;
		c=i;
		f=ht[i].parent; 
		while(f!=-1)
		{
			if(ht[f].lchild==c) 
				hc.cd[hc.start--]='0';
			else 
				hc.cd[hc.start--]='1';
			c=f;
			f=ht[f].parent;
		}
		hc.start++; 
		hcd[i]=hc;
	}
}

void DispHCode(HTNode ht[],HCode hcd[],int n) 
{
	int i,k; 
	int sum=0,m=0,j;
	printf("输出哈夫曼编码:\n");
	for (i=0;i<n;i++)
	{
		j=0;
		printf("	%s:\t",ht[i].data);
		for(k=hcd[i].start;k<=n;k++)
		{
			printf("%c",hcd[i].cd[k]);
			j++;
		}
		m+=ht[i].weight;
		sum+=ht[i].weight * j;
		printf("\n");
	}
	printf("\n平均长度=%g\n",1.0 * sum/m);
}

int main()
{
	int n=15,i;
	char * str[]={"The","of","a","to","and","in","that","he","is","at","on","for","His","are","be"};
	int fnum[]={1192,677,541,518,462,450,242,195,190,181,174,157,138,124,123};
	HTNode ht[M];
	HCode hcd[N];
	for(i=0;i<n;i++)
	{
		strcpy(ht[i].data,str[i]);
		ht[i].weight=fnum[i];
	}
	CreateHT(ht,n);
	CreateHCode(ht,hcd,n);
	DispHCode(ht,hcd,n);
	return 1;
}
### 关于哈夫曼的编程题目与练习 以下是关于哈夫曼的一些经典编程题目和练习,涵盖了构建哈夫曼、计算带权路径长度以及实现哈夫曼编码等内容。 #### 构建哈夫曼 构建哈夫曼是一个基础且重要的过程。通常可以通过优先队列(最小堆)来高效完成这一任务。以下是一道典型的题目: **题目描述**: 给定一组字符及其对应的频率,利用这些频率作为权重,构造一颗哈夫曼并返回该的根节点。 **解题思路**: 1. 创建一个最小堆并将所有单个节点加入其中,每个节点代表一个字符及其频率。 2. 反复取出堆中的两个最小权重节点,创建一个新的内部节点,其权重等于两者的总和,并将其重新放入堆中。 3. 当堆中只剩下一个节点时,这便是哈夫曼的根节点[^1]。 ```cpp struct Node { int weight; char data; Node *left, *right; Node(int w, char d = '\0', Node* l = nullptr, Node* r = nullptr) : weight(w), data(d), left(l), right(r) {} }; // 定义比较函数用于最小堆 struct CompareNode { bool operator()(const Node* a, const Node* b) { return a->weight > b->weight; } }; ``` --- #### 计算哈夫曼的带权路径长度 (WPL) 对于已知的一组权重,可以求出它们所构成的哈夫曼的带权路径长度(WPL),这是衡量哈夫曼效率的重要指标之一。 **题目描述**: 输入若干正整数表示各叶子节点的权重,输出由这些权重组成的哈夫曼的带权路径长度。 **解题方法**: 通过上述方式建立哈夫曼后,在遍历过程中统计每片叶子节点的距离乘以其权重即可得出最终结果[^5]。 --- #### 实现哈夫曼编码 除了单纯地构建哈夫曼外,还需要能够生成具体的哈夫曼编码表以便后续应用如文件压缩等领域。 **题目描述**: 依据指定字符串内的字母频次分布情况设计一套最优前缀码方案即所谓的“哈夫曼编码”。 **解决方案**: 采用递归或者栈的方式从底向上追踪直至到达顶端从而获取相应位串形式的结果[^2]。 ```python def generate_huffman_code(root): stack = [(root, "")] encoding_map = {} while stack: node, code = stack.pop() if not node.left and not node.right: # 如果是叶节点,则记录编码 encoding_map[node.data] = code if node.left: stack.append((node.left, code + '0')) if node.right: stack.append((node.right, code + '1')) return encoding_map ``` --- #### 数据压缩算法实践 进一步扩展至实际应用场景下的数据压缩处理环节也是常见的考察方向之一。 **实验目标**: 验证基于哈夫曼原理开发出来的压缩程序能否有效减少存储空间需求量的同时保持信息无损还原能力[^3]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淮南大甜橘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值