matlab实现隐函数求偏导数(impldiff函数)

总述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
由前面给出的算法,可以编写出如下函数来求解隐函数的偏导数。

函数说明

function dy = impldiff(f, x, y, n)
%impldiff
%隐函数求导
%  调用格式:
%    f1 = impldiff(f, x, y, n)
%  其中:f=f(x,y), n为导数阶次
%  注意:该函数求解后有时需要手工化简
%
% Examples:
%  已知二元隐函数 z=f(x,y),求该函数的偏导数。
% MATLAB求解语句:
%  syms x y
%  f=(x^2-2*x)*exp(-x^2-y^2-x*y)
%  F1=impldiff(f,x,y,1)  % 1%  F2=impldiff(f,x,y,2)  % 2%  F3=impldiff(f,x,y,3); % 3

应用举例

例1

问题: 已知二元隐函数 z = f ( x , y ) = ( x 2 − 2 x ) e − x 2 − y 2 − x y = 0 z=f(x,y)=(x^2-2x)e^{-x^2-y^2-xy}=0 z=f(x,y)=(x22x)ex2y2xy=0, 求该函数的偏导数。

代码如下:

syms x y
f  = (x^2-2*x)*exp(-x^2-y^2-x*y)
F1 = impldiff(f,x,y,1)  % 1阶
F2 = impldiff(f,x,y,2)  % 2阶
F3 = impldiff(f,x,y,3); % 3[n,d]=numden(F3); n=simplify(n); F3=n/d  % 化简
例2

问题: 已知二元隐函数 x 2 + x y + y 2 = 3 x^2+xy+y^2=3 x2+xy+y2=3, 求该函数的偏导数。

代码如下:

syms x y;
f=x^2+x*y+y^2-3; 
f1=impldiff(f,x,y,1); F1=subs(f1,x^2+x*y+y^2,3) 
f2=impldiff(f,x,y,2); F2=subs(f2,x^2+x*y+y^2,3)
f3=impldiff(f,x,y,3); F3=subs(f3,x^2+x*y+y^2,3)
f4=impldiff(f,x,y,4); F4=subs(f4,x^2+x*y+y^2,3)

F 1 , F 2 , F 3 F_1, F_2, F_3 F1,F2,F3分别为:
图片
F 4 F_4 F4为:
图片
化简后得:
在这里插入图片描述

函数实现

function dy = impldiff(f, x, y, n)
if mod(n,1)~=0
    error('n should positive integer, please correct') 
else 
    F1 = -simplify(diff(f,x)/diff(f,y));   dy = F1;
    for i=2:n
        dy = simplify(diff(dy,x)+diff(dy,y)*F1);
    end
end

此函数源文件可前往下面网址下载:

impldiff.m下载通道

  • 3
    点赞
  • 26
    收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:黑客帝国 设计师:我叫白小胖 返回首页
评论 3

打赏作者

weixin_43964993

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值