1 题目
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2 Java
2.1 方法一(动归正向迭代)
class Solution {
/*
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
max( 选择 rest , 选择 sell )
今天没持股,两种可能,1今天没买,2今天刚卖
dp[i-1][k][0] 到 dp[i][k][0]:昨天没持股,今天也没持股(今天没买)
dp[i-1][k][1] 到 dp[i][k][0]:昨天持股了,今天没持股(今天刚卖)
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
max( 选择 rest , 选择 buy )
今天持股,两种可能,1今天没卖,2今天刚买
dp[i-1][k][1] 到 dp[i][k][1]:昨天持股,今天也持股(今天没卖)
dp[i-1][k-1][0] 到 dp[i][k][1]:昨天没持股,今天持股(今天刚买)
求dp[I][K][0],即最后一天,最多完成了K次交易,目前不持股,的收益,即为最大收益
买的当天,k会+1,持有变1
卖的当天,k不变,持有变0
本题k = 2,最多交易2次
*/
public int maxProfit(int[] prices) {
if(prices.length == 0) return 0;
// 创建初始化备忘录
int[][][] dp = new int[prices.length][3][2];
for(int k = 0; k <= 2; k++){ // 这很难
dp[0][k][0] = 0;
dp[0][k][1] = - prices[0];
}
// 外层for状态步进
for(int i = 1; i < prices.length; i++){
for(int k = 1; k <= 2; k++){ // k = 0的状态值都是0,一般不可能是解(没交易),没有计算的必要
// 内存for状态转移
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
}
}
return dp[prices.length - 1][2][0];
}
}
我觉得这么写初始化容易理解
class Solution {
/*
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
max( 选择 rest , 选择 sell )
今天没持股,两种可能,1今天没买,2今天刚卖
dp[i-1][k][0] 到 dp[i][k][0]:昨天没持股,今天也没持股(今天没买)
dp[i-1][k][1] 到 dp[i][k][0]:昨天持股了,今天没持股(今天刚卖)
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
max( 选择 rest , 选择 buy )
今天持股,两种可能,1今天没卖,2今天刚买
dp[i-1][k][1] 到 dp[i][k][1]:昨天持股,今天也持股(今天没卖)
dp[i-1][k-1][0] 到 dp[i][k][1]:昨天没持股,今天持股(今天刚买)
求dp[I][?][0],即最后一天,完成了?次交易,目前不持股,的收益,即为最大收益
买的当天,k会+1,持有变1
卖的当天,k不变,持有变0
本题k = 2,最多交易2次
*/
public int maxProfit(int[] prices) {
if(prices.length == 0) return 0;
// 创建初始化备忘录
int I = prices.length, K = 3, J = 2;
int[][][] dp = new int[I][K][J];
for(int i = 0; i < Math.min(2 * (K - 1), I); i++){ // 暴力点就直接全部初始化-99999了
dp[i][0][0] = 0; // 注意
dp[i][0][1] = - 99999;
for(int k = 1; k < K; k++){
dp[i][k][0] = - 99999;
dp[i][k][1] = - 99999;
}
}
dp[0][1][1] = - prices[0]; // 注意
// 外层for状态步进
for(int i = 1; i < I; i++){
for(int k = 1; k < K; k++){ // k = 0的状态值都是0,一般不可能是解(没交易),没有计算的必要
// 内存for状态转移
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
}
}
// 选最大值,有可能交易1次比交易2次赚的多,并不是交易次数越多越好
int ans = 0;
for(int k = 1; k < K; k++) ans = Math.max(ans, dp[I - 1][k][0]);
return ans;
}
}
2.2 方法二(动归正向迭代)
另一种状态转移
class Solution {
/*
dp[i][j] ,表示 [0, i] 区间里,状态为 j 的最大收益
j = 0:已买入0次股票,且当前不持有
j = 1:已买入1次股票,且当前持有
j = 2:已买入1次股票,且当前不持有
j = 3:已买入2次股票,且当前持有
j = 4:已买入2次股票,且当前不持有
求 Math.max(dp[I][2], dp[I][4]),即最后一天,完成了1/2次交易,目前不持股,的收益,即为最大收益
存在 只完成1笔交易的收益 > 完成2笔交易;这是因为卖出当天不能买入,只有明天才能买入
本题k = 2,最多交易2次
*/
public int maxProfit(int[] prices) {
if(prices.length == 0) return 0;
// 创建初始化备忘录
int I = prices.length, J = 5;
int[][] dp = new int[I][J];
//for(int i = 0; i < I; i++) Arrays.fill(dp[i], Integer.MIN_VALUE); // 如果全部都是负无穷,会存在-prices[i]越界为正无穷的情况
for(int i = 0; i < I; i++) dp[i][3] = Integer.MIN_VALUE; // 这比较难理解,完全是从计算角度考虑
dp[0][0] = 0; dp[0][1] = - prices[0];
// 外层for状态步进
for(int i = 1; i < I; i++){
// 内存for状态转移
dp[i][0] = dp[i - 1][0];
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return Math.max(dp[I - 1][2], dp[I - 1][4]);
}
}