RV1126平台部署PPOCRV4时ONNX转换RKNN失败,如何解决?

🏆 本文收录于《全栈Bug调优(实战版)》专栏,致力于分享我在项目实战过程中遇到的各类Bug及其原因,并提供切实有效的解决方案。无论你是初学者还是经验丰富的开发者,本文将为你指引出一条更高效的Bug修复之路,助你早日登顶,迈向财富自由的梦想🚀!同时,欢迎大家关注、收藏、订阅本专栏,更多精彩内容正在持续更新中。让我们一起进步,Up!Up!Up!
  
备注: 部分问题/难题源自互联网,经过精心筛选和整理,结合数位十多年大厂实战经验资深大佬经验总结所得,数条可行方案供所需之人参考。

🍲问题描述

  1. 问题

RV1126平台部署PPOCRV4时ONNX转换RKNN失败,提示如下:

  1. 开发环境:
rknn_model_zoo 2.2.0
rknn-toolkit 1.7.5
onnx 1.10.0
onnx-simplifier 0.4.10
onnxoptimizer 0.3.13
onnx
### ### RV1106 平台部署 RKNN 模型的步骤 在 RV1106 平台部署 RKNN 模型需要通过 Rockchip 提供的 RKNN Runtime API 来完成。该 API 提供了完整的接口用于加载 RKNN 模型、预处理输入数据、执行推理以及解析输出结果。以下是部署的具体步骤: 1. **准备部署环境**: - 确保 RV1106 设备上已安装 RKNN Runtime 环境。 - 将转换好的 `.rknn` 模型文件复制到设备的文件系统中。 2. **加载 RKNN 模型**: - 使用 `RKNN` 类的 `load_rknn` 方法加载模型文件。 ```python from rknn.api import RKNN rknn = RKNN() rknn.load_rknn('path/to/your/model.rknn') ``` 3. **初始化运行环境**: - 调用 `init_runtime` 方法初始化推理引擎。 ```python rknn.init_runtime(target='rv1106') ``` 4. **执行推理**: - 使用 `run` 方法执行推理,并传入预处理后的输入数据。 ```python outputs = rknn.run(inputs=[input_data]) ``` 5. **解析输出结果**: - 推理完成后,从 `outputs` 中获取模型的输出张量,并根据模型的设计进行后处理。 ### ### 部署注意事项 - **输入预处理**:在部署过程中,需确保输入数据的预处理方式与模型训练保持一致。例如,若模型在训练使用了归一化(如减去均值、除以标准差),则在部署也应进行相同的处理。 - **内存管理**:由于 RV1106 是嵌入式平台,内存资源有限,因此需合理管理输入输出张量的内存分配。 - **性能优化**:可以通过调整 RKNN Runtime 的配置参数(如线程数)来优化推理速度。 ### ### 示例代码 以下是一个完整的示例代码,展示了如何在 RV1106 上部署并运行 RKNN 模型: ```python from rknn.api import RKNN # 创建 RKNN 对象 rknn = RKNN() # 加载 RKNN 模型 rknn.load_rknn('path/to/your/model.rknn') # 初始化运行环境 rknn.init_runtime(target='rv1106') # 执行推理 input_data = ... # 输入预处理后的数据 outputs = rknn.run(inputs=[input_data]) # 释放资源 rknn.release() ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug菌¹

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值