对Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN的简单理解

本文介绍了一种基于MalGAN的生成对抗网络(GAN)技术,该技术能将恶意软件加工,使其逃避基于黑匣子机器学习的检测模型。通过不断修改恶意软件检测算法使用的DLL或API特性,生成的恶意软件利用良性软件标签,成功躲避检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核心技术
利用基于恶意算法MalGAN的GAN将恶意软件作为输入,对恶意软件进行加工,使此恶意软件能够躲避基于黑匣子机器学习的检测模型的检测。(生成的恶意软件通过利用一个替身来迎合检测器的检测。)
提出了一种基于神经网络的神经网络生成方法。 以原始样本作为输入,输出对抗性实例。神经网络固有的非线性结构使其能够生成更复杂、更灵活的对抗性实例。
~~
黑匣子机器学习的检测模型:即是恶意软件生成作者对恶意软件检测模型的机器学习算法不清楚。
~~

但在这个技术中,作者可以通过不断修改恶意软件检测算法使用导入目录表中的值,来知道恶意软件检测算法中使用DLL或API特性。
~~
DLL:动态链接库,把一个完整的可执行文件分成一个个DLL文件,运用时再调用相应的文件。
API:应用程序接口,操作系统留给应用程序的一个调用接口。
~~

MalGAN的结构如下图。

在这里插入图片描述

由图中可看出,先用噪声+原始恶意软件样本作为输入,然后在GAN中生成对抗恶意软件模型,此模型能够在被检测模型的检测中通过利用良性软件对其标签,从而躲避检测器的检测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值