对A Multimodal Deep Learning Method for Android Malware Detection Using Various Features的简单理解

**

对A Multimodal Deep Learning Method for Android Malware Detection Using Various Features的简单理解

**
核心技术:
从各种方面对安卓软件的特性进行细分,然后基于相似性对特性进行划分,在恶意软件检测中实现了对有效的特征表示。同时,提出了一种基于多模式深度学习的恶意软件检测模型。

该技术先对软件动态分析,对模糊恶意软件进行再处理,重点研究了一种基于静态分析的恶意软件与正常软件之间的区别方法。该检测方法是基于各种静态特征之上。而且该技术可以灵活的添加特征类型。
模糊恶意软件:我的理解是有可能是恶意软件的软件。
————在此之前的静态特征都是有限的,此处为一突破————
(动态与静态分析方法在之前文章有提过)

此框架首先提取出被检测目标的特征,然后使用该技术的特征向量生成方法对特征进行细化。
(特征向量生成方法–>基于存在性和相似性)而且在该框架中也使用了基于重要性的分类模型对特征进行分类。在分类模型中使用了多模态深度学习方法(使用神经网络来反映不同特征的特性),以适应不同性质的特征。
如:利用语音信息和嘴形信息来识别人类语音,采用了多模态深度学习方法。输入不同类型的信息,分别在不同的初始神经网络中进行处理,并将每个初始神经网络连接到最终的神经网络,产生分类结果。

Contributions:

1.提出了一种新的android恶意软件检测框架,该框架能够反映android应用程序多种特点。
2.提出了一种特征向量生成方法,能够高效的表示出恶意软件的特征,即使其与正常软件有着极高的相似度。
3.介绍了多模态神经网络如何在恶意软件检测系统中使用,也是在此领域中的首次使用。在其中有用于恶意软件检测的模型学习策略的技术。

应用步骤:
1.输入原始数据。
2.特征提取。
3.生成特征向量,并将特征向量输入神经网络中检测。
4.检测结果。

以下是该技术的过程图:

在这里插入图片描述

OK,以上。

交通流量预测是城市交通管理和规划的重要问题之一。传统的方法通常使用统计模型和时间序列分析来进行预测,但它们往往无法捕捉到交通流量数据中的复杂模式和非线性关系。因此,本文提出了一种基于多模态深度学习的混合方法来进行交通流量预测。 该方法将多模态数据(如历史交通流量数据、气象数据、节假日信息等)作为输入,利用深度神经网络来学习数据之间的复杂关系。深度神经网络可以自动提取特征,并通过多层次的非线性变换来捕捉到不同模态数据之间的依赖关系。 具体而言,该方法包括两个主要步骤:模态学习和流量预测。在模态学习阶段,使用深度神经网络对每个模态数据进行特征提取和表示学习,从而获得高维的特征表示。在流量预测阶段,利用这些特征表示来训练一个回归模型来进行交通流量的预测。可以使用不同的深度学习模型,如卷积神经网络和循环神经网络,来处理不同类型的输入数据。 该方法在实际的交通流量数据集上进行了实验,并与传统的方法进行了比较。实验结果表明,该混合方法在预测准确性和稳定性方面具有明显的优势。它能够更好地预测交通流量的变化趋势和峰值时段,并且具有较低的误差率。 综上所述,这种基于多模态深度学习的混合方法为交通流量预测提供了一种创新的解决方案。它可以更好地挖掘和利用不同模态数据之间的关联性,从而提高预测准确性,为城市交通管理和规划提供有价值的决策支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值