自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(42)
  • 收藏
  • 关注

原创 tomcat搭建简单文件服务器

修改tomcat文件夹下的conf文件夹下的server.xml,增加一条web.xml 中修改servlet为:true 可以查看文件夹下的所有文件列表

2022-03-02 16:31:12 501 1

原创 JavaScript学习

学习资源来自B站狂神说:狂神说BOMwindow对象window代表浏览器窗口Navigator类封装了浏览器的信息(不建议使用)大多数时候不会使用navigator对象,因为会被人为修改。不建议使用这些属性来判断和编写代码。screen对象代表屏幕location对象location代表当前页面的url信息document对象代表当前页面 HTML DOM文档树获取具体的文档树节点获取cookiedocument.cookie服务端可以设置cookie:httpOnly

2021-12-04 15:20:11 524

原创 JAVA基础学习

学习资源来自B站狂神说:https://space.bilibili.com/95256449/channel/seriesdetail?sid=393820Java基本概念Java特性和优势简单性面向对象 重点在对象和对象之间的接口上可以移植性 write once,run anywhere高性能分布式 通过Url访问资源动态性 反射机制多线程

2021-12-04 15:18:55 559

原创 Scrapy爬虫学习草稿

学习资源:https://www.bilibili.com/video/BV1jt411Q7PD?p=2&spm_id_from=pageDriverScheduler存放的是request对象Downloader对收到的request对象进行发送请求操作四个模块之间是没有直接相通的,而是通过Scrapy Engine来进行通信的各个中间件(Middlewares)是用于对所通过其的requests或者responses进行处理的,其中Spiders Middlewares不会对所提取数据进

2021-12-04 15:12:07 118

原创 WebSocket摘抄笔记

来源:https://www.runoob.com/html/html5-websocket.html (以下所有资料均来自来源博客,建议直接看来源博客!)WebSocket是HTML5开始提供的一种在单个TCP连接上进行全双工通讯的协议。什么是TCP连接?(来源:https://www.cnblogs.com/xsilence/p/6034361.html )为实现数据的可靠传输,...

2020-05-04 01:10:09 102

原创 threading.lock()模块摘抄笔记(二)

来源:https://blog.csdn.net/u012067766/article/details/79733801threading.lock()先给出代码例子:import threadingimport time lock = threading.Lock()l = [] def test1(n): lock.acquire() l.append(n) p...

2020-05-01 18:49:26 128

原创 threading 模块摘抄笔记(一)

来源:https://www.cnblogs.com/enet01/p/6027368.htmlthreading提供了一个比thread模块更高层的API来提供线程的并发性。这些线程并发运行并共享内存。一、Thread的使用目标函数可以实例化一个Thread对象,每个Thread对象代表着一个线程,可以通过start()方法,开始运行。先比较一下有无threading的...

2020-04-29 15:41:18 154

原创 网络编程flask一些学习笔记摘抄(一)

来源:https://blog.csdn.net/yang9520/article/details/79740374?ops_request_misc=&request_id=&biz_id=102&utm_source=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0先来一...

2020-04-29 11:11:29 239

原创 加速tensorflow图计算速度学习笔记

1.抛弃传统tensorflow中的同步方法,既是训练操作必须要等数据传入之后才能开始运行,取而代之的是tensorflow中的线程和队列。将数据的输出和取出用队列形式操作,将其放在不同的线程中,这样就可以取代传统的方法。来源:https://blog.csdn.net/lyc_yongcai/article/details/73239693import timeimport te...

2020-04-22 16:59:53 466

原创 HMM MEMM 零碎学习笔记

学习视频:https://www.bilibili.com/video/BV19t411R7QU?p=2HMM生成模型参数模型为,其中Π为初始概率矩阵,A为状态转移矩阵,B为发射矩阵。初始概率矩阵为随机生成的值。状态转移矩阵既是y_t-1到y_t的参数状态变化趋势,隐状态的变化趋势。发射矩阵既是y_t到x_t的概率,状态变量到观测变量的概率。建模对象...

2020-04-21 16:30:05 185

原创 POS Tagging 和Chunking (学习笔记)

来源:https://blog.csdn.net/Sirow/article/details/89306934词性标注(POS-Tagging)这里的例子主要针对英文,词性标注的作用便是给输入的句子的每个单词分割开然后去除功能词,再给每一个单词标注他们的词性,词性有八个主要组成部分:名词、代词、形容词、动词、副词、介词、连词和感叹词。例子:Noun (N)- Daniel...

2020-04-16 12:56:07 318

原创 BERT简述 学习笔记

参考文章:https://zhuanlan.zhihu.com/p/466525121.BERT模型BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的。模型的主要创新点都在pre-train方法上,即用了Masked LM和...

2020-04-15 16:06:04 195

原创 seq2seq数据预处理中一些符号笔记

这里主要是自己的小笔记‘’ :给缺省长度的向量补齐,至于补什么内容有很多方法‘’ :unknown 在数据量很多的时候,有一些字符只出现了一次或者两次,则这些字符可以用来表示‘’ :句子起始符‘’ :end of sentence 句子终止符...

2020-04-10 09:38:16 100

原创 Self-Attention和transformer的一些笔记

来源:https://zhuanlan.zhihu.com/p/47282410直观理解self-attention利用attention的机制,计算每一个输入单词与其他所有输入单词之间的关联。例如在翻译“I arrived at the bank after crossing the river”的时候,当我们翻译到bank河岸的时候,river就会有较高的Attention ...

2020-04-08 11:44:49 142

原创 Seq2Seq中的Attention 学习笔记

来源:https://zhuanlan.zhihu.com/p/47063917(该博客本人对来源博客的一些自己的理解在Seq2Seq中传统RNN的局限:Seq2Seq的基本原理便是encoder-decoder的结构,通过encoder生成一个定长的向量,然后再通过decoder将这个向量翻译成对应的句子。encoder和decoder的传统结构有RNN, LSTM, GRU等...

2020-04-07 23:30:02 131

原创 GRU概述

来源:https://zhuanlan.zhihu.com/p/32481747GRUGRU(Gate Recurrent Unit)是循环神经网络(Recurrent Neural Network, RNN)的一种。和LSTM(Long-Short Term Memory)一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。GRU与LSTM在实际表现上相差无几,但是由于GR...

2020-04-02 16:34:45 2818

原创 RNN与LSTM的概述

来源:https://zhuanlan.zhihu.com/p/32085405先介绍RNN循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。比如某个单词的意思会因为上文提到的内容不同而有不同的含义,RNN就能够很好地解决这类问题。普通RNN主要形式如下图其中,x...

2020-04-02 13:47:51 1029

原创 对Seq2Seq模型概述

来源:https://www.jianshu.com/p/b2b95f945a98Seq2Seq模型的简介Seq2Seq模型就是在对模型的输出长度不能确定的情况下所使用的模型,例如在翻译或者在聊天机器人的具体运用。翻译的时候,例如输入了中国加油,他会先翻译出China, 然后将China作为下一个输入点的输入,然后再输出Fighting,这样就可以输出任意长的序列了。举个简单的例子,当...

2020-04-01 16:29:13 199

原创 恶意代码攻击原理

借鉴论文 - 恶意代码原理剖析1.渗透技术渗透技术的任务是***保证恶意代码能够植入到目标主机中***,可以通过如下方式:感染可执行程序、分区表和数据文件(如:宏通过移动介质;通过人、社会工程方式;借助于系统和软件漏洞;通过电子邮件、Web网站和网页、P2P文件共享、即时通信工具和ARP欺骗方式等。2.自启动技术自启动技术的任务是***保证恶意代码在受害主机下一次开机启动后也被激活**...

2019-09-26 15:14:12 1685

原创 对kaggle2015 1st代码的简单理解

这里对训练模型的py文件不作解释unique_gram.py是对不同文件中的操作码进行计数,并且找出最多的前多少个操作码以及他的次数。from csv import DictReaderfrom datetime import datetimeimport pickleimport heapqimport sys#load datadef load_label(path, ...

2019-09-25 01:03:05 669

原创 对Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks的简单理解

本文主要:因为在我们训练模型时,由于我们所需要的数据集太大,对于计算机的配置要求太高,时间消耗太大,所以我们一般会将模型的训练过程外包给第三方,而会存在着有着恶意想法的第三方,会在给我们训练的模型上安上后门,影响我们模型的判断,这时候就需要我们运用不同的方法来‘消毒’。作者自己给自己设计了新型的后门攻击并且用了自己设计的fine-pruning(a combination of pruning...

2019-08-01 11:01:20 2549

原创 对TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time简单理解

我理解的作者:作者提出了在一般的检测恶意代码的模型评分都是偏高的,因为他们忽略了训练模型时,所用的数据集的时效作用(时间偏差),以及所用数据的正反例分布情况(即空间偏差)。这里提出了两个概念:Spatial bias refers to unrealistic assumptions about the ratio of goodware to malware in the data.T...

2019-08-01 10:18:44 875 1

原创 机器学习model - sklearn的一些常用的口令与其用法

1.model的算法模型model = LinearRegression() #这里只是用线性回归算法来举例,还有很多其他的算法~ 括号里面可以输入模型的具体参数,具体什么参数不同模型有着不同的参数。2.model的训练model.fit(data_X, data_Y) #data_X, data_Y分别代表了训练集的特征和标签。3.model的得分model.score(tes...

2019-07-29 21:30:01 715

原创 机器学习算法 --KNN算法(K-Nearest Neighbor)简单理解

KNN算法工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系。输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数。最后选择k个最相似数据中出...

2019-07-29 16:18:38 106

原创 比赛代码6(My EDA - I want to see all!)

代码地址作者思路:代码块:作者先观察了训练集的样本标签分布,从中得知他们的分布是非常平衡的train['HasDetections'].value_counts().plot.bar()plt.title('HasDetections(target)')接下来检查特征中含有缺失值的情况# checking missing data#缺失值的总数total = train.is...

2019-07-27 16:59:26 367

原创 比赛代码5(NFFM baseline )

代码地址作者思路:作者的重点放在了模型的训练上,而数据的特征处理则没有太多关照,只处理了两列特征。在神经网络模型的训练上作者用了K折交叉验证的方法。代码块:第一块是download数据,这里就不介绍了第二块处理float特征def make_bucket(data,num=10):#用来定义float特征编码的边界,如若bins=[5,10,15],则若特征值为[7,9,12],则编...

2019-07-26 16:31:47 318

原创 比赛代码4(LightGBM. Baseline Model Using Sparse Matrix)

代码地址作者的主要思路:作者从每一列特征出发,合并train与test的特征,然后分析这一列特征中特征值的出现次数,从中计算不平衡的值,把有用的数据留下来,把没用的数据变为0。后使用独热编码对train编码,用编码后的数据进行模型训练,训练过程中有用到K折交叉验证,模型为决策树。代码块:for usecol in train.columns.tolist()[1:-1]: #将里面的值变...

2019-07-26 14:23:33 268

原创 比赛代码3(Everyone Do this at the Beginning!!)

代码地址该代码功能主要是去掉特征中的无用特征作者思路:先找出需要去掉的特征,其中包括:特征中缺失值多的特征中特征值倾斜程度大的从高相关的两个特征中特征值少的。然后在总数中去掉这些特征,减去这些特征列之后再在总的Dataframe中去掉含有缺失值的样本,所以最终得到的样本中没有缺失值且比较精炼。分析原始代码:从以下处理缺失值过多的特征:(train.isnull().sum(...

2019-07-26 11:58:00 204

原创 比赛代码2(Is this Malware? )

代码地址作者的主要思想: 先将特征一个分析,分析出特征中有一个特征值占90以上,或者空值占了90以上的,就直接把这一列特征去掉,再将筛选后的特征Dataframe分析。而分析思路是先将其中的一个与其他特征的关系很大的特征提出,然后再对其余特征进行一个一个分析。通过图表对其进行分析,若有分类的特征,则将其类型变为’category’型,对应着被统计的变量,若没有其本身没有分类特征,则将其结合之前分...

2019-07-25 22:30:39 159

原创 比赛代码(Detecting Malwares with LGBM)

比赛代码的地址作者先对不同类型数据的特征列进行了分类,不同特征类:二分类型,字符型,数字型作者后对字符类型的特征列中的特征进行了特征编码,用了下面的操作: #下面这段是对特征列中特征值特别多的进行编码并从字符列列表中除去以防下面的操作对其重复操作 for variable in tqdm(frequency_encoded_variables): ...

2019-07-25 18:47:42 305

原创 对Malware Detection by Eating a Whole EXE的简单简单简单单理解

核心技术:既是用神经网络测试一整个文件的二进制代码 ,这之前相关的工作中并没有此想法。这个方法消除了这个领域特定于知识的代码和特性处理,减少了专门代码的数量,减少了复制和扩展的障碍。(在其他的检测工作中存在有人工输入代码特性的工作,而这需要特定的知识的代码)...

2019-05-09 00:25:11 967

原创 对Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition的简单理解

核心技术:在自动语音识别中,使用不可被探测的高效的音频对抗实例,利用听觉掩蔽的心理声学原理,通过构造 即使在实际的模拟环境扭曲之后仍然有效的 微小扰动来实现物理世界的空中音频对抗性例子,改变语音,去迷惑人们的判断。( 利用听觉掩蔽的心理声学原理: 仅将对抗性扰动添加到 音频区域,在那里人类不会听到这种干扰,即使这种扰动在绝对能量方面不是“安静”的)提升的地方:原本只是三四个单词可以作为对抗实...

2019-05-02 22:10:04 561

原创 对Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN的简单理解

核心技术利用基于恶意算法MalGAN的GAN将恶意软件作为输入,对恶意软件进行加工,使此恶意软件能够躲避基于黑匣子机器学习的检测模型的检测。(生成的恶意软件通过利用一个替身来迎合检测器的检测。)提出了一种基于神经网络的神经网络生成方法。 以原始样本作为输入,输出对抗性实例。神经网络固有的非线性结构使其能够生成更复杂、更灵活的对抗性实例。~~黑匣子机器学习的检测模型:即是恶意软件生成作者对恶...

2019-04-27 00:22:59 1378

原创 对A Multimodal Deep Learning Method for Android Malware Detection Using Various Features的简单理解

**对A Multimodal Deep Learning Method for Android Malware Detection Using Various Features的简单理解**核心技术:从各种方面对安卓软件的特性进行细分,然后基于相似性对特性进行划分,在恶意软件检测中实现了对有效的特征表示。同时,提出了一种基于多模式深度学习的恶意软件检测模型。该技术先对软件动态分析,对模...

2019-04-19 17:53:25 692

原创 对Bringing a GAN to a Knife-fight Adapting Malware Communication to Avoid Detectio的简单理解

主要技术:提出利用GANS生成网络流量,以模拟其他类型的流量。:即修改了恶意软件的网络行为,从而去模仿合法的申请行为,然后避免了堵截,或者检测。这里设想了自适应恶意软件和自适应IPS的可能性。(IPS: 入侵防御系统(Intrusion-prevention system)是一部能够监视网络或网络设备的网络资料传输行为的计算机网络安全设备,能够即时的中断、调整或隔离一些不正常或是具有伤害性...

2019-04-15 00:19:30 528

原创 对 Detection of Malicious Code Variants Based on Deep Learning 的简单理解

文章的核心技术主要包括三种:1.把恶意代码转换成灰度化图像2.利用卷积神经网络对图像进行识别和分类,能够自动提取恶意软件图像的特征.3.使用蝙蝠算法来解决不同恶意软件家族之间的数据不平衡问题。Index Terms—Malware variants 恶意软件变体grayscale image 灰度图像deep learning 深度学习convolution neural n...

2019-04-13 21:17:03 1301 2

原创 ACM训练

题目地址:https://vjudge.net/problem/hdu-2000题目分析:利用输入字符数组做循环条件,在循环结构中对字符数组进行排序处理,然后再按照要求输出即可。#include using namespace std;int main(){char a[3];while (cin>>a[0]>>a[1]>>a[2]){for ...

2018-12-06 23:23:38 147

原创 ACM训练题

题目地址:https://vjudge.net/problem/HDU-2101题目分析:把输入a,b作为循环条件。再用if判断数据的正确。#include using namespace std;int main(){int a, b;while (cin >> a >> b){if ((a + b) % 86 == 0)cout << “y...

2018-12-06 22:55:27 125

原创 ACM训练

题目地址:https://vjudge.net/problem/hdu-1000?tdsourcetag=s_pctim_aiomsg题目分析:利用输入两个数据来做循环条件即可#include using namespace std;int main(){int a, b;while (cin >> a >> b){cout << a + b ...

2018-12-06 17:23:42 213

原创 acm训练

题目地址:https://vjudge.net/problem/CodeForces-266A题目分析:定义好石头个数后,直接利用后一个和前一个的关系做,两个两个比较即可。#include using namespace std;int main(){int n,x=0;cin >> n;char *p;p = new char[n];cin >> p;...

2018-12-06 17:19:16 133

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除