[AcWing]850. Dijkstra求最短路 II(C++实现)堆优化版Dijkstra算法求最短路模板题
1. 题目
2. 读题(需要重点注意的东西)
思路:朴素Dijkstra算法有一步是找距离节点1最近的且最终节点未确定的节点,这一步是找最小值,并且找最小值的时间复杂度是O(n),因此可以想到,用堆来优化这一步,使其时间复杂度降为O(1)
如果对朴素Dijkstra算法的思想有不太清楚的同学,建议下拉到 4. 可能有帮助的前置习题 ,复习一下朴素Dijkstra算法的思想。
又因为本题是一个稀疏图,因此采用邻接表来存储,如果对邻接表来存储图的方式有不太清楚的同学,建议下拉到 4. 可能有帮助的前置习题 ,复习一下邻接表存储图的方式。
3. 解法
---------------------------------------------------解法---------------------------------------------------
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII; // 堆中存储的元素
const int N = 1e6 + 10;
int n, m;
// W[]是边的权重
int h[N], w[N], e[N], ne[N], idx; // 稀疏图,用邻接表的形式来存
int dist[N];
bool st[N];
// 加边的模板
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
// 放入起点
heap.push({0, 1});
// 堆不空
while (heap.size())
{
// 找到堆中最小的点
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[ver] + w[i])
{
dist[j] = dist[ver] + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
cout << dijkstra() << endl;
return 0;
}
4. 可能有帮助的前置习题
- [AcWing]849. Dijkstra求最短路 I(C++实现)朴素Dijkstra算法求最短路模板题
- [AcWing]846. 树的重心(C++实现)树与图的dfs模板题,在第二个子问题中,就有关于图的邻接表存储方式的说明
5. 所用到的数据结构与算法思想
- 堆优化版Dijkstra算法
- 邻接表
- 堆(STL版,用优先队列来实现)C++数据结构—priority_queue(优先队列,堆)
6. 总结
朴素Dijkstra算法模板题,推荐完全背下来。