[AcWing]850. Dijkstra求最短路 II(C++实现)堆优化版Dijkstra算法求最短路模板题

[AcWing]850. Dijkstra求最短路 II(C++实现)堆优化版Dijkstra算法求最短路模板题

1. 题目

在这里插入图片描述

2. 读题(需要重点注意的东西)

思路:朴素Dijkstra算法有一步是找距离节点1最近的且最终节点未确定的节点,这一步是找最小值,并且找最小值的时间复杂度是O(n),因此可以想到,用堆来优化这一步,使其时间复杂度降为O(1)

如果对朴素Dijkstra算法的思想有不太清楚的同学,建议下拉到 4. 可能有帮助的前置习题 ,复习一下朴素Dijkstra算法的思想。

又因为本题是一个稀疏图,因此采用邻接表来存储,如果对邻接表来存储图的方式有不太清楚的同学,建议下拉到 4. 可能有帮助的前置习题 ,复习一下邻接表存储图的方式。

3. 解法

---------------------------------------------------解法---------------------------------------------------

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

typedef pair<int, int> PII; // 堆中存储的元素

const int N = 1e6 + 10;

int n, m;
// W[]是边的权重
int h[N], w[N], e[N], ne[N], idx; // 稀疏图,用邻接表的形式来存
int dist[N];
bool st[N];

// 加边的模板
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    // 放入起点
    heap.push({0, 1});

    // 堆不空
    while (heap.size())
    {
        // 找到堆中最小的点
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[ver] + w[i])
            {
                dist[j] = dist[ver] + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h); 
    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }

    cout << dijkstra() << endl;

    return 0;
}

4. 可能有帮助的前置习题

5. 所用到的数据结构与算法思想

6. 总结

朴素Dijkstra算法模板题,推荐完全背下来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cloudeeeee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值