[LeetCode]198. 打家劫舍(java实现)动态规划

本文解析了如何利用动态规划解决LeetCode中的打家劫舍问题。通过状态转移方程f[i] = g[i-1] + nums[i]和g[i] = max(f[i-1], g[i-1]),求解在给定整数数组中选择最优路径。涉及数据结构为数组,核心算法思想是动态规划。
摘要由CSDN通过智能技术生成

1. 题目

在这里插入图片描述

2. 读题(需要重点注意的东西)

思路(dp):

在指数级别的方案中选择最优解 ===》 动态规划(dp)

每间房子有偷和不偷两种情况,因此选法是指数级别的,选择一个最优解,因此本题可以使用dp解决。

主要是状态表示f[i] 表示必选i的所有方法,g[i] 表示必不选i的所有方法
在这里插入图片描述

3. 解法

---------------------------------------------------解法---------------------------------------------------

class Solution {
    public int rob(int[] nums) {
        int n = nums.length;
        int[] f = new int[n];
        int[] g = new int[n];

        f[0] = nums[0];
        g[0] = 0;
        for(int i = 1;i < n;i++){
            f[i] = g[i-1] + nums[i];
            g[i] = Math.max(f[i-1],g[i-1]);
        }
        return Math.max(f[n - 1],g[n - 1]);
    }
}

可能存在的问题:

4. 可能有帮助的前置习题

5. 所用到的数据结构与算法思想

  • 动态规划

6. 总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cloudeeeee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值