《计算机算法设计与分析》课后练习05

Author:龙箬
Computer Application Technology
Change the World with Data and Artificial Intelligence !
CSDN@weixin_43975035
帘外桃花开仍旧,帘内人比桃花瘦

n \sqrt{n} n 段合并排序算法:

  • 如果在归并排序算法的分割步骤中,将数组 a [ 0 : n − 1 ] a[0:n-1] a[0:n1]划分为 ⌊ n ⌋ \lfloor \sqrt{n} \rfloor n
    个子数组,每个子数组中有 O ( n ) O(\sqrt{n}) O(n ) 个元素,然后递归的对分割后的子数组进行排序。最后将所得到的 ⌊ n ⌋ \lfloor \sqrt{n} \rfloor n 个排好序的子数组归并成排好序的数组 a [ 0 : n − 1 ] a[0:n-1] a[0:n1]
  • 设计一个实现上述策略的归并排序算法,并分析算法的计算复杂性。

Java程序代码如下:

package com.company;

public class MERGESORT {
    public static void main(String[] args) {
        int[] a = {8, 13, 52, 34, 57, 47, 96, 905, 28, 12, 44, 176}; 
        mergesort(a, 0, a.length - 1);
        for (int k : a) {
            System.out.print(k + ",");
        }
    }

    private static void merge(int[] a, int i, int n1, int j, int n2) {
        int tmpi = i;
        int k = i;
        int[] p = new int[a.length];//临时数组
        while (i <= n1 && j <= n2) {
            if (a[i] < a[j])
                p[k++] = a[i++];
            else
                p[k++] = a[j++];
        }
        while (i <= n1)
            p[k++] = a[i++];
        while (j <= n2)
            p[k++] = a[j++];
        for (int o = tmpi; o <= n2; o++)
            a[o] = p[o];
    }

    public static void mergesort(int[] a, int left, int right) {
        if (left == right)
            return;
        int sqrt = (int) Math.sqrt(right - left + 1);
        for (int i = left, j = left; i <= right; i = j + 1) {
            j = Math.min(i + sqrt - 1, right);
            mergesort(a, i, j);
            if (i != left)
                merge(a, left, i - 1, i, j);
        }
    }

伪代码如下:

procedure mergesort(a[],low, high)
	//a(low: high)是一个全程数组,low和high分别指示当前待排序区间的最小下标和最大下标,它含有high-low+1≥0个待排序的元素
	integer low, high, i, j
	sqrt <- (int)Math.sqrt(right-left+1) //计算根号n分界点
	for(i=left, j=left; i<=right; i=j+1){
		j = Math.min(i + sqrt - 1, right);//计算每一个子集合结束位置
	mergesort(a, i, j);//递归调用每一个子集合排序
	if (i != left)
	merge(a, left, i - 1, i, j); //与其前一个子集合合并
	}
end mergesort

procedure merge(a[], int i, int n1, int j, int n2)  //使用辅助数组归并两个已排序的集合
    int tmpi <- i;
    int k <- i;
    int[] p = new int[a.length];//临时数组
    while (i <= n1 && j <= n2) { //处理处理两个已排序的序列,当两个集合都没有取尽时,将较小的元素先存放到P中
        if (a[i] < a[j]) //如果前一个数组中的元素较小
            p[k++] <- a[i++];
        else  //如果后一个数组中的元素较小
            p[k++] <- a[j++];
    }
    while (i <= n1)  //剩余元素处理过程
        p[k++] <- a[i++];
    while (j <= n2) //剩余元素处理过程
        p[k++] <- a[j++];
    for o <-tmpi to do a[o] <- p[o] repeat //将已排序的集合复制到a数组
end merge

时间复杂度:

T ( n ) = n 1 / 2 ⋅ T ( n 1 / 2 ) + O ( n ) T(n) =n^{1/2}·T(n^{1/2})+O(n) T(n)=n1/2T(n1/2)+O(n)

T ( n 1 / 2 ) = n 1 / 4 ⋅ T ( n 1 / 4 ) + O ( n 1 / 2 ) T(n^{1/2}) =n^{1/4}·T(n^{1/4})+O(n^{1/2}) T(n1/2)=n1/4T(n1/4)+O(n1/2)

T ( n 1 / 4 ) = n 1 / 8 ⋅ T ( n 1 / 8 ) + O ( n 1 / 4 ) T(n^{1/4}) =n^{1/8}·T(n^{1/8})+O(n^{1/4}) T(n1/4)=n1/8T(n1/8)+O(n1/4)
T ( n ) = n 1 / 2 [ n 1 / 4 ⋅ T ( n 1 / 4 ) + O ( n 1 / 2 ) ] + O ( n ) = n 1 / 2 + 1 / 4 ⋅ T ( n 1 / 4 ) + n 1 / 2 ⋅ O ( n 1 / 2 ) + O ( n ) = . . . . . . = n 1 / 2 + 1 / 4 + 1 / 8 + . . . + 1 / 2 x ⋅ T ( n 1 / 2 x ) + n 1 / 2 x − 1 ⋅ O ( n 1 / 2 x − 1 ) + . . . + n 1 / 2 ⋅ O ( n 1 / 2 ) + O ( n ) < = n ⋅ T ( 1 ) + n 1 / 2 x − 1 ⋅ O ( n 1 / 2 x − 1 ) + . . . + n 1 / 2 ⋅ O ( n 1 / 2 ) + O ( n ) \begin{aligned} T(n) &=n^{1/2}[n^{1/4}·T(n^{1/4})+O(n^{1/2})]+O(n)\\ &=n^{1/2+1/4}·T(n^{1/4})+n^{1/2}·O(n^{1/2})+O(n)\\ &=......\\ &=n^{1/2+1/4+1/8+...+1/2^{x}}·T(n^{1/2^{x}})+n^{1/2^{x-1}}·O(n^{1/2^{x-1}})+...+n^{1/2}·O(n^{1/2})+O(n)\\ &<=n·T(1)+n^{1/2^{x-1}}·O(n^{1/2^{x-1}})+...+n^{1/2}·O(n^{1/2})+O(n) \end{aligned} T(n)=n1/2[n1/4T(n1/4)+O(n1/2)]+O(n)=n1/2+1/4T(n1/4)+n1/2O(n1/2)+O(n)=......=n1/2+1/4+1/8+...+1/2xT(n1/2x)+n1/2x1O(n1/2x1)+...+n1/2O(n1/2)+O(n)<=nT(1)+n1/2x1O(n1/2x1)+...+n1/2O(n1/2)+O(n)

n ⋅ O ( n ) = O ( n ) \sqrt{n}·O(\sqrt{n}) =O(n) n O(n )=O(n) n 1 / 2 x − 1 ⋅ O ( n 1 / 2 x − 1 ) < n ⋅ O ( n ) n^{1/2^{x-1}}·O(n^{1/2^{x-1}}) < \sqrt{n}·O(\sqrt{n}) n1/2x1O(n1/2x1)<n O(n )

故原式 T ( n ) < = n ⋅ T ( 1 ) + n ⋅ l o g n = O ( n ⋅ l o g n ) T(n) <= n·T(1) + n· log n =O(n·log n) T(n)<=nT(1)+nlogn=O(nlogn)

空间复杂度:
归并时用 m i n min min 堆来存储每个组当前的最小值
T ( n ) = n ⋅ T ( n ) + c ( n − 1 ) ⋅ l o g n T(n)=\sqrt{n}·T(\sqrt{n})+c(n-1)·log\sqrt{n} T(n)=n T(n )+c(n1)logn

参考致谢:
国科大 马丙鹏老师《计算机算法设计与分析》

如有侵权,请联系侵删
需要本实验源数据及代码的小伙伴请联系QQ:2225872659

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值