NLP:NLTK、spaCy、pattern库

NLTK

spaCy

  • 分句sentencizer
  • 分词Tokenization
  • 词性标注Part-of-speech tagging
  • 词形还原Lemmatization
  • 识别停用词Stop words
  • 依存分析Dependency Parsing
  • 提取名词短语Noun Chunks
  • 命名实体识别Named Entity Recognization
  • 指代消解Coreference Resolution
  • 依存分析可视化Display
  • 知识提取
  • 官网:https://spacy.io/
  • 使用方法:https://www.jianshu.com/p/e6b3565e159d

pattern

官网:https://github.com/clips/pattern

区别于以上两个库的最大优点就是

可以根据要求输出一个动词的不同时态的形式!!

细致讲解:https://blog.csdn.net/weixin_43975374/article/details/107484781

from pattern.en import conjugate, lemma, lexeme, PRESENT, INFINITIVE, PAST, FUTURE, SG, PLURAL, PROGRESSIVE
vb_word = "be"
print(conjugate(vb_word, tense=PRESENT, person=1, number=SG))
print(conjugate(vb_word, tense=PRESENT, person=2, number=SG))
print(conjugate(vb_word, tense=PRESENT, person=3, number=SG))
print(conjugate(vb_word, tense=PRESENT, number=PLURAL))
print(conjugate(vb_word, tense=PRESENT, aspect=PROGRESSIVE))
print(conjugate(vb_word, tense=INFINITIVE))
print(conjugate(vb_word, tense=PAST, aspect=PROGRESSIVE))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值