Python-numpy模块下均值、方差、标准差与协方差代码实现

numpy模块下均值、方差、标准差与协方差Python代码实现

import numpy as np
# numpy这个模块调用其函数np.函数(被操作参数,其它参数),有的也可以被操作的参数.函数(其他参数)
# 第一种毕可运行,第二种不确定


# 随机生成两个样本
# numpy.random.randint(low, high=None, size=None, dtype='l')
# 带等号的是可选的默认参数,下限,上限,个数,类型。
x = np.random.randint(0, 9, 1000)
y = np.random.randint(0, 9, 1000)
a = [5, 6, 16, 9]
b = [[4, 5], [6, 7]]


# 计算平均值
# mean()函数
mx = x.mean()
my = y.mean()
# average函数
# 可加权重
ma = np.average(a, weights=[1, 2, 1, 1])


# 计算方差
va = np.var(a, ddof=0)  # ddof参数表示是否为样本,默认不是,0为不是
vb = np.var(b, axis=1)  # axis参数,值0列上方差,值1行方差,无就总体方差


# 计算标准差
sa = np.std(a, ddof=0)  # ddof参数表示是否为样本,默认不是,0为不是
sb = np.std(b, axis=1)  # axis参数,值0列上标准差,值1行标准差,无就是总体方差



# 计算协方差矩阵
covxy = np.cov(x, y)  # cov可以单独计算两个变量,三维往上合成一个进行运算
T = np.array([9, 15, 25, 14, 10, 18, 0, 16, 5, 19, 16, 20])
S = np.array([39, 56, 93, 61, 50, 75, 32, 85, 42, 70, 66, 80])
M = np.asarray([38, 56, 90, 63, 56, 77, 30, 80, 41, 79, 64, 88])
X = np.vstack((T, S, M))  #将T,S,M按行堆叠起来
cX = np.cov(X, rowvar=True, ddof=1)  # rowvar值为True以每一行一个观测,反之为一列一个观测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值