基于Unet++、Deeplabv3+、MANet的GF-1遥感影像水体语义分割


@[TOC]前言

记录每日计划与总结以及实验的方法与结果。


提示:以下是本篇文章正文内容,下面案例可供参考

一、每日记录

日期上午计划下午计划总结
2021-12-08阅读论文《Towards Open-Set Semantic Segmentation of Aerial Images影像数据分析选取论文应该更加慎重,减少不必要的时间浪费
2021-12-10服务器环境配置影像数据分析数据挖掘可以使我们事半功倍
2021-12-13阅读论文《Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks(ICCV)读论文时序的语义分割
2021-12-14数据标注数据标注
2021-12-15数据标注数据标注
2021-12-16阅读论文《Lightweight Temporal Self-Attention for Classifying Satellite Images Time Series读论文以输入向量代替需要学习的Value可以提高效率
2021-12-17生成训练集ResUNet
2021-12-20NDWI作为比较DeepLabV3+
2021-12-21UNet++UNet++

二、论文汇总

  • Towards Open-Set Semantic Segmentation of Aerial Images Caio C.V.da Silva. CVPR,2020(PDF)(Citations 6)
    • 开放场景分类,结果包含着Unknown Class,但实验结果精度并没有很大的提升。
  • Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks Vivien Sainte Fare Garnot. ICCV,2021(PDF)(Citations 1)
    • 可以将一整年的遥感影像(T×B×C×H×W)放入网络中,不用去掉云覆盖,在最低分辨率处加入时间Attenrion模块(Lightweight Temporal Self-Attention),下采样中采用GroupNorm而不是BatchNorm,用以解决时序长度不相同的问题,最后提高了农田分割的精度。
  • Lightweight Temporal Self-Attention for Classifying Satellite Images Time Series Vivien Sainte Fare Garnot and Loic Landrieu. Advanced Analytics and Learning on Temporal Data,2020(PDF)(Citations 10)
    • L-TAE采用了信道分组策略,下图中H为头的个数,用输入向量取代Value
  • MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation Tongle Fan.GuangLei Wang.IEEE Access, 2020 (PDF)(Citations 21)
    • 设计了两个注意力模块:基于空间的注意块(PAB)和多尺度(不同特征通道数)融合注意块(MFAB)。
PAB
MFAB
  • Semantic Segmentation of Crop Type in Africa: A Novel Dataset and Analysis of Deep Learning Methods Rose Rustowicz, Robin Cheong, Lijing Wang.CVPR,2019 (Citations 34)
    • 不同分辨率遥感数据在语义分割当中的应用,最后的标签是低分辨率的10m
    • 在得到不同分辨率的分割结果后的融合
  • Hierarchical Multi-Scale Attention for Semantic Segmentation Andrew Tao,Karan Sapra,Bryan Catanzaro.CVPR,2020 (Citations 171)
    • 一种基于注意力机制的多尺度预测结果结合
  • Aflexible spatiotemporal method for fusing satellite images with different resolutions Xiaolin Zhu,Eileen H. Helmer.Remote Sensing of Environment,2016 (Citations 307)
    • 高分辨率影像与高采集率(低分辨率)影像的融合方法,FSDAF
    • 选择纯像素,最小二乘法得到ΔF,得到(a)图。地物覆盖变化没能Get到。在这里插入图片描述
    • 直接用t2粗分辨率,TPS插值得到(b)图,Get到了地物覆盖变化,但是边界模糊。
    • 根据(b)图,得到新的残差分布r,得到最后的ΔF,即(d)图
      在这里插入图片描述
    • 理论上直接相加(a)、(b)即可,但因为是逐像素的,存在不确定性和块效应(d图),因此使用额外的邻域信息来减少最终预测的不确定性,同时减轻块效应

三、数据集创建

  在原始影像上裁剪3张5000×5000的影像:

GF-1原始影像
GF-1水体mask
  在三张裁剪影像中水体分别占了不同的比例。
水体占比
Waterset04.12%
Waterset121.26%
Waterset242.87%

四、结果记录

交叉验证ndwi > 0.2Ex0:Resnet34+UNet(33min)Ex1:Deeplabv3+(35min)Ex2:UNet++(57min)Ex3:MANet(52min)
Water095.00%99.05%98.87%99.03%99.01%
Water187.17%97.74%97.42%97.75%97.76%
Water288.13%96.10%95.22%96.07%95.98%

总结

测试数据的分布与训练数据不同时,精度下降很大,原因应该是训练数据分布过于特殊。

### DeepLabV3 语义分割使用教程和实现方法 #### 实现框架选择 对于构建语义分割平台,可以选择PyTorch或TensorFlow作为开发环境。前者提供了简洁易懂的API接口,后者则拥有更广泛的社区支持和技术文档[^2]。 #### DeeplabV3+架构详解 DeeplabV3+是一种先进的语义分割网络结构,在保持高分辨率的同时能够捕捉图像中的细节特征。其核心组件为空洞卷积(也称为膨胀卷积),这使得模型可以在不增加参数量的情况下扩大感受野范围;另外还引入了ASPP模块来增强多尺度上下文信息的学习能力[^1]。 #### 数据准备与预处理 为了训练有效的语义分割模型,高质量的数据集至关重要。可以采用`labelme`这样的工具来进行自定义类别的标注工作,并将其转化为适合输入给定神经网络的形式。如果需要调整图片大小,则可以通过编写简单的脚本来完成这一操作[^4]: ```python import cv2 from pathlib import Path def resize_images(input_dir, output_dir, target_size=(395, 700)): input_path = Path(input_dir) output_path = Path(output_dir) if not output_path.exists(): output_path.mkdir(parents=True) for img_file in input_path.glob('*.jpg'): img = cv2.imread(str(img_file)) resized_img = cv2.resize(img, dsize=target_size) save_path = str(output_path / img_file.name) cv2.imwrite(save_path, resized_img) resize_images('./input_images', './output_resized') ``` 此代码片段展示了如何利用Python库OpenCV批量改变指定文件夹内所有JPEG格式照片的尺寸并保存至另一位置。 #### 训练过程概述 当准备好数据后便可以着手于实际的模型训练阶段。以PyTorch为例,整个流程大致如下所示: - 加载已有的预训练权重(如ResNet),以便加速收敛速度; - 定义损失函数(通常是交叉熵损失)以及优化器; - 将训练样本送入GPU/CPU设备中进行前向传播计算预测结果; - 反馈误差信号更新权值直至满足停止条件为止。 #### 测试评估环节 经过充分迭代后的模型应当能够在验证集上取得较好的表现。此时可进一步测试未知样例的效果并通过可视化手段直观展示出来。常用的性能度量标准包括但不限于平均交并比(mean Intersection over Union)[^3]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值