题目大意
一道有点复杂的bfs题,主要的难点是机器人是在点上,而障碍物在格子里,因为机器人大小确定的⚪,所以我们可以假装把它放到格子里,因此它的范围是x∈[1,n),y∈[1,m)。并且要注意下障碍物的判断条件即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=55;
const int INF=0x3f3f3f3f;
typedef long long ll;
int n,m;
int sx,sy,fx,fy,num;
char c;
struct node{
int x,y,pos;
};
int mov[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
int a[maxn][maxn];
int vis[maxn][maxn][5];
queue<node>q;
void Init(){
memset(a,-1,sizeof(a));
memset(vis,-1,sizeof(vis));
}
void bfs(){
node t,z;
t.x=sx;
t.y=sy;
t.pos=num;
vis[sx][sy][num]=0;
q.push(t);
while(!q.empty()){
t=q.front();
if(t.x==fx&&t.y==fy){
return ;
}
q.pop();
//cout<<t.x<<" "<<t.y<<" "<<t.pos<<endl;
for(int i=1;i<=3;i++){
z.x=t.x+i*mov[t.pos][0];
z.y=t.y+i*mov[t.pos][1];
z.pos=t.pos;
if(a[z.x][z.y]||a[z.x+1][z.y]||a[z.x][z.y+1]||a[z.x+1][z.y+1]){
break;
}
if(z.x>=1&&z.x<n&&z.y>=1&&z.y<m&&vis[z.x][z.y][z.pos]==-1){
q.push(z);
vis[z.x][z.y][z.pos]=vis[t.x][t.y][t.pos]+1;
if(z.x==fx&&z.y==fy){
//cout<<"here"<<endl;
return ;
}
}
}
z.x=t.x;
z.y=t.y;
z.pos=(t.pos+1)%4;
if(vis[z.x][z.y][z.pos]==-1){
q.push(z);
vis[z.x][z.y][z.pos]=vis[t.x][t.y][t.pos]+1;
}
z.pos=(t.pos+4-1)%4;
if(vis[z.x][z.y][z.pos]==-1){
q.push(z);
vis[z.x][z.y][z.pos]=vis[t.x][t.y][t.pos]+1;
}
}
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>m;
Init();
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>a[i][j];
}
}
cin>>sx>>sy>>fx>>fy>>c;
num=0;
if(c=='S'){ num=0;}
else if(c=='E'){ num=1;}
else if(c=='N'){ num=2;}
else if(c=='W'){ num=3;}
bfs();
for(int i=0;i<4;i++){
if(vis[fx][fy][i]!=-1){
cout<<vis[fx][fy][i];
return 0;
}
}
cout<<-1<<endl;
}