学习自:https://blog.csdn.net/Lin_RD/article/details/105186081
一、二分法流程
二分法的一般流程如下:
- 确定左右边界:[left, right)
- 确定终止条件
- 获得中点
- 比较,缩减一半区间
二、确定左右边界
对于一个有序序列最小索引是0,最大索引是 n − 1 n-1 n−1
可以使用两种方法表示其区间:
- 左闭右开: [ 0 , n ) [0, n) [0,n)
- 左闭右闭: [ 0 , n − 1 ] [0, n-1] [0,n−1]
一般情况符合使用习惯的话都会使用左闭右开的方式
三、确定终止条件
需要明确的是,我们需要遍历整个数组,因此终止条件必须要确保数组的所有元素被包含
如果使用
[
0
,
n
)
[0, n)
[0,n)此时右值不可取,因此终止条件是: while left < right
如果使用
[
0
,
n
−
1
]
[0, n-1]
[0,n−1]此时右值可取,因此终止条件是:while left <= right
例子:假设数组只有一个元素,n=1,左闭右开 [ 0 , 1 ) [0, 1) [0,1)则当设置 l e f t < r i g h t left<right left<right则 0 < 1 0<1 0<1满足可以进入考察全部元素
如果是左闭右闭 [ 0 , 0 ] [0,0] [0,0]那么只有设置 l e f t < = r i g h t left<=right left<=right即有等号才能进入循环,判断所有元素
取右值用<= 不取右值用<
四、获取中点
最主要的是防止溢出:
mid := left + (right-left)/2
mid := (left+right)>>1
五、收缩区间
避免死循环,所以需要保证每次进入while可行区间必须缩小即要么left变大或者right变小
升序序列下,当nums[mid]<target
时,应该将left
右移,省略左半部分
此时有两种情况:
left=mid
left=mid+1
选择哪一种考察的原则是:对于位置mid
的值是否是可能的target
这里很明显不是,所以我们采用第二种(因为两种情况都是左闭,所以left
都可以取到)
当nums[mid]>target
时,right
左移,省略右半部分
此时也有两种情况:
right=mid
right=mid-1
相同的对应上面的原则,mid
的值也一定不是可能的target
,要舍去
-
左闭右开[0, n): 因为
right
取不到,所以对应第一种可以直接舍去mid
位置,满足;第二种则会多舍去一个mid-1
位置,让mid-1
位置无法考察到,所以应该选择right=mid
(隐式收缩) -
左闭右闭[0, n]:
right
可以取到,所以要舍去的话只能选择第二种方式即right=mid-1
(显式收缩)
right是否能取到,是对应while条件,如是是left < right,那么当left==right时是无法进入while循环中的,所以无法取到;对于left<=right条件,当left等于right时可以取到right
总结如下(都假设mid值不是要找的值):
while条件 | 收缩左半部 | 收缩右半部 |
---|---|---|
Left < Right | Left=mid+1 | Right=mid |
Left <= Right | Left=mid+1 | Right=mid-1 |
六、退出循环的位置
while退出后,left和right分别指向哪?
1. while left < right
首先明确的是,这个条件下退出时left == right
因为此条件下每次right=mid
而判断收缩右半部的条件是:nums[mid]>target
所以可以明确的是nums[right]>target
,即退出循环后right
指针指向的值一定是大于target
的
再者,推出循环时left==right
,所以退出循环后left
、right
指向的值都是大于目标值的
实际上,left
、right
都指向第一个大于target
的值
假设left-1存在:
- 如果执行过赋值left = mid + 1, 那么nums[mid] < target。所以nums[left-1] < target。nums[left-1] < target < nums[left],显然nums[left]是nums中大于target的最小值。
- 如果left = mid + 1没有执行过, 那么说明left == 0,没有移动过,这就相当于left-1不存在。
如果left-1不存在, left-1不存在说明left == 0, 因为0是第一个索引,所以nums[left]还是第一个大于target的数(target小于nums[0])
2. while left <= right
退出时,left==right+1
如果执行过赋值right = mid - 1
,nums[mid] > target
, 换句话说nums[right+1] == nums[mid] > target
。left = right + 1
所以nums[left] > target
。
如果没执行过right = mid-1
, 那么right == n-1
, left == right+1 == n
。也就是说不存在大于target
的数字(nums[n-1]<target
)。
如果执行过赋值left = mid + 1
,nums[mid] < target
所以nums[mid+1]=nums[left]>target
如果没执行过left = mid + 1
, 那么left == 0
,是第一个索引,所以left
仍然是第一个大于target
的数字。
综上所述:不论哪种情况,结束二分时left都是指向第一个大于target的数,或者不存在大于target的数,那么left指向序列的末尾n, 需要注意的是,nums[left-1]并不一定就是目标值,因为目标值不一定存在于序列中
七、训练
两种情况如下:
// 左闭右开
func search(nums []int, target int) int {
l, r := 0, len(nums)
for l < r {
mid := l + (r-l)/2
if nums[mid] < target {
l = mid+1
}else if nums[mid] > target {
r = mid
}else {
return mid
}
}
// l的位置是第一个大于target的值,但是l-1不一定就是目标值
if l < len(nums) && l > 0 && nums[l-1] == target {
return l-1
}
return -1
}
// 左闭右闭
func search(nums []int, target int) int {
l, r := 0, len(nums)-1
for l <= r {
mid := l + (r-l)/2
if nums[mid] < target {
l = mid+1
}else if nums[mid] > target {
r = mid-1
}else {
return mid
}
}
if l > 0 && l < len(nums) && nums[l-1] == target {
return l-1
}
return -1
}
func searchInsert(nums []int, target int) int {
l, r, n := 0, len(nums), len(nums)
for l < r {
mid := (l+r) >> 1
if nums[mid] < target {
l = mid+1
}else if nums[mid] > target {
r = mid
}else {
return mid
}
}
// 不存在于数组的三种情况
if l == 0 { return 0 }
if l == n { return n }
// if nums[l-1] != target { return l }
return l
}
觉得不错的话,请点赞关注呦~~你的关注就是博主的动力
关注公众号,查看更多go开发、密码学和区块链科研内容: